咨询与建议

限定检索结果

文献类型

  • 1,285 篇 期刊文献
  • 1,237 篇 会议
  • 11 册 图书

馆藏范围

  • 2,533 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,586 篇 工学
    • 1,185 篇 计算机科学与技术...
    • 977 篇 软件工程
    • 365 篇 信息与通信工程
    • 246 篇 生物工程
    • 242 篇 控制科学与工程
    • 213 篇 电气工程
    • 202 篇 生物医学工程(可授...
    • 188 篇 光学工程
    • 115 篇 电子科学与技术(可...
    • 107 篇 网络空间安全
    • 80 篇 化学工程与技术
    • 79 篇 机械工程
    • 77 篇 仪器科学与技术
    • 59 篇 动力工程及工程热...
    • 54 篇 安全科学与工程
  • 866 篇 理学
    • 417 篇 数学
    • 293 篇 生物学
    • 230 篇 物理学
    • 170 篇 统计学(可授理学、...
    • 110 篇 化学
    • 64 篇 系统科学
  • 524 篇 管理学
    • 320 篇 管理科学与工程(可...
    • 229 篇 图书情报与档案管...
    • 158 篇 工商管理
  • 214 篇 医学
    • 171 篇 临床医学
    • 149 篇 基础医学(可授医学...
    • 99 篇 公共卫生与预防医...
    • 91 篇 药学(可授医学、理...
  • 82 篇 法学
    • 75 篇 社会学
  • 57 篇 经济学
    • 57 篇 应用经济学
  • 48 篇 农学
  • 28 篇 教育学
  • 17 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 131 篇 accuracy
  • 114 篇 deep learning
  • 88 篇 machine learning
  • 79 篇 training
  • 76 篇 feature extracti...
  • 71 篇 convolutional ne...
  • 70 篇 real-time system...
  • 56 篇 computational mo...
  • 49 篇 predictive model...
  • 48 篇 artificial intel...
  • 46 篇 optimization
  • 43 篇 data models
  • 41 篇 internet of thin...
  • 37 篇 support vector m...
  • 34 篇 reinforcement le...
  • 34 篇 semantics
  • 31 篇 genetic programm...
  • 31 篇 decision making
  • 31 篇 analytical model...
  • 31 篇 security

机构

  • 77 篇 maharishi school...
  • 53 篇 centre of interd...
  • 44 篇 department of ar...
  • 39 篇 vishwakarma inst...
  • 35 篇 centre for artif...
  • 34 篇 institute of pho...
  • 33 篇 school of comput...
  • 32 篇 department of co...
  • 27 篇 shenzhen institu...
  • 26 篇 school of comput...
  • 24 篇 centre of resear...
  • 23 篇 school of comput...
  • 23 篇 vivekananda glob...
  • 21 篇 guangdong key la...
  • 21 篇 chitkara centre ...
  • 19 篇 department of el...
  • 18 篇 chitkara univers...
  • 17 篇 school of comput...
  • 17 篇 shanghai artific...
  • 17 篇 school of artifi...

作者

  • 50 篇 zhang mengjie
  • 42 篇 tao dacheng
  • 34 篇 xue bing
  • 23 篇 min gu
  • 19 篇 mei yi
  • 16 篇 ding weiping
  • 15 篇 shen linlin
  • 15 篇 mengjie zhang
  • 14 篇 ghojogh benyamin
  • 13 篇 seifedine kadry
  • 12 篇 ketan kotecha
  • 12 篇 ghodsi ali
  • 12 篇 wang meng
  • 12 篇 mirjalili seyeda...
  • 12 篇 iglesias juan eu...
  • 12 篇 xiong hui
  • 12 篇 karray fakhri
  • 11 篇 bing xue
  • 11 篇 li tianrui
  • 11 篇 liu tongliang

语言

  • 2,289 篇 英文
  • 226 篇 其他
  • 23 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Centre for Data Science and Artificial Intelligence&School of Engineering and Computer Science"
2533 条 记 录,以下是2341-2350 订阅
排序:
Local deep-feature alignment for unsupervised dimension reduction
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Jian Yu, Jun Tao, Dacheng School of Science and Technology Zhejiang International Studies University Hangzhou310012 China School of Computer Science Hangzhou Dianzi University Hangzhou310018 China UBTECH Sydney Artificial Intelligence Centre School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney DarlingtonNSW2008 Australia
This paper presents an unsupervised deep-learning framework named Local Deep-Feature Alignment (LDFA) for dimension reduction. We construct neighbourhood for each data sample and learn a local Stacked Contractive Auto... 详细信息
来源: 评论
Understanding metric-related pitfalls in image analysis validation
arXiv
收藏 引用
arXiv 2023年
作者: Reinke, Annika Tizabi, Minu D. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Kavur, A. Emre Rädsch, Tim Sudre, Carole H. Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Buettner, Florian Cardoso, M. Jorge Cheplygina, Veronika Chen, Jianxu Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kenngott, Hannes Kleesiek, Jens Kofler, Florian Kooi, Thijs Kopp-Schneider, Annette Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Riegler, Michael A. Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. van Calster, Ben Varoquaux, Gaël Yaniv, Ziv R. Jäger, Paul F. Maier-Hein, Lena Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Intelligent Medical Systems Germany NCT Heidelberg A Partnership Between DKFZ University Medical Center Heidelberg Germany Heidelberg Division of Medical Image Computing Germany Heidelberg Division of Intelligent Medical Systems Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montreal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Leuven Belgium partner site Frankfurt/Mainz a partnership between DKFZ and UCT Frankfurt Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany and Frankfurt Cancer Insititute Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for Statistics in Medicine University of Oxford Oxford United Kingdom Center for Biomedical In
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that parti... 详细信息
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
The second data release from the European Pulsar Timing Array: II. Customised pulsar noise models for spatially correlated gravitational waves
收藏 引用
ASTRONOMY & ASTROPHYSICS 2023年 678卷
作者: [Anonymous] Institute of Astrophysics FORTH N. Plastira 100 70013 Heraklion Greece Max-Planck-Institut für Radioastronomie Auf dem Hügel 69 53121 Bonn Germany Department of Physics Indian Institute of Technology Roorkee Roorkee-247667 India Department of Electrical Engineering IIT Hyderabad Kandi Telangana 502284 India Université Paris-Cité CNRS Astroparticule et Cosmologie 75013 Paris France The Institute of Mathematical Sciences C. I. T. Campus Taramani Chennai 600113 India Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai 400094 India Fakultät für Physik Universität Bielefeld Postfach 100131 33501 Bielefeld Germany ASTRON Netherlands Institute for Radio Astronomy Oude Hoogeveensedijk 4 7991 PD Dwingeloo The Netherlands Department of Physical Sciences Indian Institute of Science Education and Research Mohali Punjab 140306 India Laboratoire de Physique et Chimie de l’Environnement et de l’Espace Université d’Orléans / CNRS 45071 Orléans Cedex 02 France Observatoire Radioastronomique de Nançay Observatoire de Paris Université PSL Université d’Orléans CNRS 18330 Nançay France Dipartimento di Fisica “G. Occhialini” Università degli Studi di Milano-Bicocca Piazza della Scienza 3 20126 Milano Italy INFN Sezione di Milano-Bicocca Piazza della Scienza 3 20126 Milano Italy INAF – Osservatorio Astronomico di Brera via Brera 20 20121 Milano Italy Institute for Gravitational Wave Astronomy and School of Physics and Astronomy University of Birmingham Edgbaston Birmingham B15 2TT UK INAF – Osservatorio Astronomico di Cagliari via della Scienza 5 09047 Selargius (CA) Italy Hellenic Open University School of Science and Technology 26335 Patras Greece Kavli Institute for Astronomy and Astrophysics Peking University Beijing 100871 PR China Department of Astronomy and Astrophysics Tata Institute of Fundamental Research Homi Bhabha Road Navy Nagar Colaba Mumbai
Aims. The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole bin... 详细信息
来源: 评论
Improving generalization via attribute selection on out-of-the-box data
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Xiaofeng Tsang, Ivor W. Liu, Chuancai School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Centre for Artificial Intelligence University of Technology Sydney UltimoNSW2007 Australia Collaborative Innovation Center of IoT Technology and Intelligent Systems Minjiang University Fuzhou350108 China
Zero-shot learning (ZSL) aims to recognize unseen objects (test classes) given some other seen objects (training classes), by sharing information of attributes between different objects. Attributes are artificially an... 详细信息
来源: 评论
Addressing survey fatigue bias in longitudinal social contact studies to improve pandemic preparedness
收藏 引用
Scientific Reports 2025年 第1期15卷 1-17页
作者: Dan, Shozen Ling, Zhi Chen, Yu Tegegne, Joshua Jaeger, Veronika K. Karch, André Mishra, Swapnil Ratmann, Oliver Vollmer, Sebastian Kraemer, Moritz Duchene, David A. Faria, Nuno Sejdinovic, Dino Unwin, Juliette Miscouridou, Xenia Semenova, Elizaveta Flaxman, Seth Bhatt, Samir Department of Mathematics Imperial College London London United Kingdom National University of Singapore Saw Swee Hock School of Public Health Singapore Singapore University of Münster Institute of Epidemiology and Social Medicine Münster Germany National University of Singapore Institute of Data Science Singapore Singapore Technical University of Kaiserslautern Kaiserslautern Germany German Research Center for Artificial Intelligence Kaiserslautern Germany Department of Statistics University of Warwick Coventry United Kingdom Department of Biology Univesity of Oxford Oxford United Kingdom Department of Public Health University of Copenhagen Copenhagen Denmark MRC Centre for Global Infectious Disease Analysis Imperial College London London United Kingdom School of Computer and Mathematical Sciences The University of Adelaide Adelaide Australia School of Mathematics University of Bristol Bristol United Kingdom Department of Mathematics and Statistics University of Cyprus Nicosia Cyprus Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom Department of Infectious Disease Epidemiology Imperial College London London United Kingdom School of Public Health University of Copenhagen Copenhagen Denmark
Social contact surveys are an important tool to assess infection risks within populations, and the effect of non-pharmaceutical interventions on social behaviour during disease outbreaks, epidemics, and pandemics. Num...
来源: 评论
Unsupervised deep domain adaptation for hyperspectral image classification
Unsupervised deep domain adaptation for hyperspectral image ...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Wei Li Wei Wei Lei Zhang Cong Wang Yanning Zhang School of Computer Science Northwestern Polytechnical University Xi'an Shanxi China Inception Institute of Artificial Intelligence (IIAI) UAE The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Xi'an Shanxi China
Deep neural networks have been proven to be a promising way for hyperspectral image (HSI) classification. Their success depends on a premise that source domain (i.e., training) and target domain (i.e., test) samples a...
来源: 评论
Tensor Decomposition for EEG Signals Retrieval
Tensor Decomposition for EEG Signals Retrieval
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Zehong Cao Yu-Cheng Chang Mukesh Prasad M. Tanveer Chin-Teng Lin School of Technology Environments and Design College of Sciences and Engineering University of Tasmania TAS Australia Centre for Artificial Intelligence and School of Computer Science Faculty of Engineering and Information Technology University of Technology Sydney NSW Australia Discipline of Mathematics Indian Institute of Technology Indore India
Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to ... 详细信息
来源: 评论
Learning to adapt invariance in memory for person re-identification
arXiv
收藏 引用
arXiv 2019年
作者: Zhong, Zhun Zheng, Liang Luo, Zhiming Li, Shaozi Yang, Yi Department of Artificial Intelligence Xiamen University Xiamen361005 China Centre for Artificial Intelligence University of Technology Sydney UltimoNSW2007 Australia Research School of Computer Science Australian National University CanberraACT0200 Australia Center of Information and Communication Engineering Xiamen University Xiamen361005 China
This work considers the problem of unsupervised domain adaptation in person re-identification (re-ID), which aims to transfer knowledge from the source domain to the target domain. Existing methods are primary to redu... 详细信息
来源: 评论
Adapting Stochastic Block Models to Power-Law Degree Distributions
arXiv
收藏 引用
arXiv 2019年
作者: Qiao, Maoying Yu, Jun Bian, Wei Li, Qiang Tao, Dacheng School of Computer Science and Technology at Hangzhou Dianzi University Hangzhou China Centre for Artificial Intelligence in the Faculty of Engineering and Information Technology at the University of Technology Sydney School of Software in the Faculty of Engineering and Information Technology at the University of Technology Sydney Department of Computing at Hong Kong Polytechnic University UBTECH Sydney Artificial Intelligence Centre School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney 6 Cleveland St DarlingtonNSW2008 Australia
Stochastic block models (SBMs) have been playing an important role in modeling clusters or community structures of network data. But, it is incapable of handling several complex features ubiquitously exhibited in real... 详细信息
来源: 评论