咨询与建议

限定检索结果

文献类型

  • 1,297 篇 期刊文献
  • 1,236 篇 会议
  • 11 册 图书

馆藏范围

  • 2,544 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,595 篇 工学
    • 1,191 篇 计算机科学与技术...
    • 982 篇 软件工程
    • 365 篇 信息与通信工程
    • 246 篇 生物工程
    • 242 篇 控制科学与工程
    • 218 篇 电气工程
    • 202 篇 生物医学工程(可授...
    • 188 篇 光学工程
    • 115 篇 电子科学与技术(可...
    • 107 篇 网络空间安全
    • 80 篇 化学工程与技术
    • 79 篇 机械工程
    • 77 篇 仪器科学与技术
    • 60 篇 动力工程及工程热...
    • 54 篇 安全科学与工程
  • 869 篇 理学
    • 419 篇 数学
    • 294 篇 生物学
    • 230 篇 物理学
    • 171 篇 统计学(可授理学、...
    • 111 篇 化学
    • 64 篇 系统科学
  • 525 篇 管理学
    • 321 篇 管理科学与工程(可...
    • 229 篇 图书情报与档案管...
    • 159 篇 工商管理
  • 215 篇 医学
    • 172 篇 临床医学
    • 149 篇 基础医学(可授医学...
    • 99 篇 公共卫生与预防医...
    • 92 篇 药学(可授医学、理...
  • 83 篇 法学
    • 75 篇 社会学
  • 57 篇 经济学
    • 57 篇 应用经济学
  • 48 篇 农学
  • 28 篇 教育学
  • 17 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 132 篇 accuracy
  • 115 篇 deep learning
  • 88 篇 machine learning
  • 80 篇 training
  • 77 篇 feature extracti...
  • 71 篇 convolutional ne...
  • 70 篇 real-time system...
  • 56 篇 computational mo...
  • 49 篇 predictive model...
  • 48 篇 artificial intel...
  • 46 篇 optimization
  • 43 篇 data models
  • 41 篇 internet of thin...
  • 37 篇 support vector m...
  • 34 篇 reinforcement le...
  • 34 篇 semantics
  • 31 篇 genetic programm...
  • 31 篇 decision making
  • 31 篇 analytical model...
  • 31 篇 security

机构

  • 77 篇 maharishi school...
  • 53 篇 centre of interd...
  • 44 篇 department of ar...
  • 39 篇 vishwakarma inst...
  • 35 篇 centre for artif...
  • 34 篇 institute of pho...
  • 33 篇 school of comput...
  • 32 篇 department of co...
  • 27 篇 shenzhen institu...
  • 27 篇 school of comput...
  • 24 篇 centre of resear...
  • 23 篇 school of comput...
  • 23 篇 vivekananda glob...
  • 22 篇 guangdong key la...
  • 21 篇 chitkara centre ...
  • 19 篇 department of el...
  • 18 篇 chitkara univers...
  • 17 篇 school of comput...
  • 17 篇 shanghai artific...
  • 17 篇 school of artifi...

作者

  • 50 篇 zhang mengjie
  • 42 篇 tao dacheng
  • 34 篇 xue bing
  • 23 篇 min gu
  • 19 篇 mei yi
  • 16 篇 ding weiping
  • 15 篇 shen linlin
  • 15 篇 mengjie zhang
  • 14 篇 ghojogh benyamin
  • 13 篇 seifedine kadry
  • 12 篇 ketan kotecha
  • 12 篇 ghodsi ali
  • 12 篇 wang meng
  • 12 篇 mirjalili seyeda...
  • 12 篇 iglesias juan eu...
  • 12 篇 xiong hui
  • 12 篇 karray fakhri
  • 11 篇 bing xue
  • 11 篇 li tianrui
  • 11 篇 liu tongliang

语言

  • 2,300 篇 英文
  • 226 篇 其他
  • 23 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Centre for Data Science and Artificial Intelligence&School of Engineering and Computer Science"
2544 条 记 录,以下是2461-2470 订阅
排序:
Annotation artifacts in natural language inference data
arXiv
收藏 引用
arXiv 2018年
作者: Gururangan, Suchin Swayamdipta, Swabha Levy, Omer Schwartz, Roy Bowman, Samuel R. Smith, Noah A. Department of Linguistics University of Washington SeattleWA United States Language Technologies Institute Carnegie Mellon University PittsburghPA United States Paul G. Allen School of Computer Science & Engineering University of Washington SeattleWA United States Allen Institute for Artificial Intelligence SeattleWA United States Center for Data Science and Department of Linguistics New York University New YorkNY United States
Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is l... 详细信息
来源: 评论
DiSAN: Directional self-attention network for RNN/CNN-free language understanding
arXiv
收藏 引用
arXiv 2017年
作者: Shen, Tao Jiang, Jing Zhou, Tianyi Pan, Shirui Long, Guodong Zhang, Chengqi Centre of Artificial Intelligence Feit University of Technology Sydney Paul G. Allen School of Computer Science and Engineering University of Washington
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interes... 详细信息
来源: 评论
Preface
ICMLCA 2021 - 2nd International Conference on Machine Learni...
收藏 引用
ICMLCA 2021 - 2nd International Conference on Machine Learning and computer Application 2021年 iii页
作者: Ning, Xiansheng Feng, Yongxin Zhang, Wenbo Yue, Mingkai Du, Ke-Lin Huang, Shutao Zhou, Fang Ba, Shuhong Fu, Chong Shui, Penglang Xu, Shuwen Wu, Sheng Wang, Shushan Du, Zhonghua Gao, Zhijun Fan, Chunlong Li, Yufeng Wang, Yupeng Liu, Qingli Yu, Jingang Yin, Zhenyu Zhang, Deyu Gao, Hongwei Wen, Feng Guo, Cean Hao, Yongping Chan, Yung-Kuan Pavlovich, Vinogradov Gennady Kirpichnikova, Irina Qian, Zhihong Ivanov, Dmitriy V. Zhou, Xueguan Nezamabadi-Pour, Hossein Yang, Qing Zhang, Yongtang Liao, Haibin Huang, Ying Srinivasan, Kathiravan Xu, Zhenghua Pachori, Ram Bilas Zhang, Jialu AlShawabkeh, Mahmoud Guo, Chengjun Chaugule, Archana Ajit Lima, Alberto Sampaio Liu, Huayong Vidal, Jorge Maestre Alrshah, Mohamed A. Ghafoor, Kayhan Zrar Kubicek, Jan Chaugule, Archana Ajit Rodríguez-Pérez, Miguel Kumar, Gulshan Nasri, Mehdi Borrego, Carlos Persico, Valerio Wagh, Sanjeev Yan, Wenjun Yang, Li Yang, Dawei Xing, Yongkang Yang, Huadong Shang, Chengguo Chang, Xingong Shi, Hongbo Li, Aijun Feng, Liping Lv, Yali Liang, Minfu Wang, Kaixuan Bai, Zengliang Liang, Anhui Nan, Zhihong Ji, Suqin Chang, Liwei Zhou, Hongbin Yao, Chunli Cao, Guodong Zhang, Juling School of Information Science and Engineering Shenyang Ligong University China School of Equipment Engineering Shenyang Ligong University China Concordia University Canada School of Automotive and Transportation Shenyang Ligong University China School of Information Science and Engineering Shenyang Ligong University China School of Equipment Engineering Shenyang Ligong University China Northeastern University China Xidian University China Beijing University of Posts and Telecommunications China Beijing Institute of Technology China Nanjing University of Science & Technology China Shenyang Jianzhu University China Shenyang Aerospace University China Dalian University China Shenyang Institute of Computing Technology Chinese Academy of Sciences China Shenyang Ligong University China National Chun Hsing University Taiwan Department of Informatics and Applied Mathematics Russia South Ural State University Russia Jilin University China Samara State University of Transport Russia Naval Universit of Engineering China Shahid Bahonar University of Kermanto Iran Central China Normal University China Guangdong Neusoft Institute China Hubei University of Science and Technology China Liuzhou Railway Vocational Technical College China Vellore Institute of Technology India Hebei University of Technology China Indian Institute of Technology Indore India Xiangnan University China Guangxi Normal University for Nationalities China UESTC China Pimpri-Chinchwad College of Engineering & Research India Federal University of Ceará Brazil Complutense University of Madrid Spain Universiti Putra Malaysia Malaysia Shanghai Jiao Tong University China VŠB - Technical University of Ostrava Cuw Pimpri-Chinchwad College of Engineering & Research Ravet Pune India University of Vigo Spain Division of Research and Development India Islamic Azad University Iran Departament Enginyeria of Information Comunicacions Autonomous University of Barcelona Spain Opportunistic Networks United States Univers
来源: 评论
Measurement of the multiplicity dependence of Υ production ratios in pp collisions at = 13 TeV
收藏 引用
Journal of High Energy Physics 2025年 第5期2025卷 1-24页
作者: Aaij, R. Abdelmotteleb, A. S. W. Abellan Beteta, C. Abudinén, F. Ackernley, T. Adefisoye, A. A. Adeva, B. Adinolfi, M. Adlarson, P. Agapopoulou, C. Aidala, C. A. Ajaltouni, Z. Akar, S. Akiba, K. Albicocco, P. Albrecht, J. Alessio, F. Alexander, M. Aliouche, Z. Alvarez Cartelle, P. Amalric, R. Amato, S. Amey, J. L. Amhis, Y. An, L. Anderlini, L. Andersson, M. Andreianov, A. Andreola, P. Andreotti, M. Andreou, D. Anelli, A. Ao, D. Archilli, F. Argenton, M. Arguedas Cuendis, S. Artamonov, A. Artuso, M. Aslanides, E. Ataíde Da Silva, R. Atzeni, M. Audurier, B. Bacher, D. Bachiller Perea, I. Bachmann, S. Bachmayer, M. Back, J. J. Baladron Rodriguez, P. Balagura, V. Balboni, A. Baldini, W. Balzani, L. Bao, H. Baptista de Souza Leite, J. Barbero Pretel, C. Barbetti, M. Barbosa, I. R. Barlow, R. J. Barnyakov, M. Barsuk, S. Barter, W. Bartolini, M. Bartz, J. Basels, J. M. Bashir, S. Bassi, G. Batsukh, B. Battista, P. B. Bay, A. Beck, A. Becker, M. Bedeschi, F. Bediaga, I. B. Behling, N. A. Belin, S. Belous, K. Belov, I. Belyaev, I. Benane, G. Bencivenni, G. Ben-Haim, E. Berezhnoy, A. Bernet, R. Bernet Andres, S. Bertolin, A. Betancourt, C. Betti, F. Bex, J. Bezshyiko, Ia. Bhom, J. Bieker, M. S. Biesuz, N. V. Billoir, P. Biolchini, A. Birch, M. Bishop, F. C. R. Bitadze, A. Bizzeti, A. Blake, T. Blanc, F. Blank, J. E. Blusk, S. Bocharnikov, V. Boelhauve, J. A. Boente Garcia, O. Boettcher, T. Bohare, A. Boldyrev, A. Bolognani, C. S. Bolzonella, R. Bonacci, R. B. Bondar, N. Bordelius, A. Borgato, F. Borghi, S. Borsato, M. Borsuk, J. T. Bouchiba, S. A. Bovill, M. Bowcock, T. J. V. Boyer, A. Bozzi, C. Brea Rodriguez, A. Breer, N. Brodzicka, J. Brossa Gonzalo, A. Brown, J. Brundu, D. Buchanan, E. Buonaura, A. Buonincontri, L. Burke, A. T. Burr, C. Butter, J. S. Buytaert, J. Byczynski, W. Cadeddu, S. Cai, H. Caillet, A. C. Calabrese, R. Calderon Ramirez, S. Calefice, L. Cali, S. Calvi, M. Calvo Gomez, M. Camargo Magalhaes, P. Cambon Bouzas, J. I. Campana, P. Campora Perez, D. H. Campoverde Quezada, A. F. Capelli, S. Capriotti, L. Nikhef National Institute for Subatomic Physics Amsterdam Netherlands Department of Physics University of Warwick Coventry United Kingdom Physik-Institut Universität Zürich Zürich Switzerland Oliver Lodge Laboratory University of Liverpool Liverpool United Kingdom Syracuse University Syracuse United States Instituto Galego de Física de Altas Enerxías (IGFAE) Universidade de Santiago de Compostela Santiago de Compostela Spain H.H. Wills Physics Laboratory University of Bristol Bristol United Kingdom Department of Physics and Astronomy Uppsala University Uppsala Sweden Université Paris-Saclay CNRS/IN2P3 IJCLab Orsay France University of Michigan Ann Arbor United States Université Clermont Auvergne CNRS/IN2P3 LPC Clermont-Ferrand France University of Cincinnati Cincinnati United States INFN Laboratori Nazionali di Frascati Frascati Italy Fakultät Physik Technische Universität Dortmund Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany European Organization for Nuclear Research (CERN) Geneva Switzerland School of Physics and Astronomy University of Glasgow Glasgow United Kingdom Department of Physics and Astronomy University of Manchester Manchester United Kingdom Cavendish Laboratory University of Cambridge Cambridge United Kingdom LPNHE Sorbonne Université Paris Diderot Sorbonne Paris Cité CNRS/IN2P3 Paris France Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Brazil School of Physics State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China INFN Sezione di Firenze Firenze Italy INFN Sezione di Ferrara Ferrara Italy INFN Sezione di Milano-Bicocca Milano Italy Università degli Studi di Milano-Bicocca Milano Italy University of Chinese Academy of Sciences Beijing China INFN Sezione di Roma Tor Vergata Roma Italy Università di Roma Tor Vergata Roma Italy Consejo Nacional de Rectores (CONARE) San Jose Costa Rica Aix Marseille Univ CNRS/IN2P3 CPPM Mar
The Υ(2S) and Υ(3S) production cross-sections are measured relative to that of the Υ(1S) meson, as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of 13 TeV. The m...
来源: 评论
Visualizing the Energy of Scattered data by Using Cubic Timmer Triangular Patches
收藏 引用
Journal of Physics: Conference Series 2019年 第1期1366卷
作者: F A M Ali S A A Karim S C Dass V Skala A Saaban M K Hasan I Hashim Fundamental and Applied Sciences Department Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak Darul Ridzuan Malaysia Fundamental and Applied Sciences Department and Centre for Smart Grid Energy Research (CSMER) Institute of Autonomous System Universiti Teknologi PETRONAS Bandar Seri Iskandar 32610 Seri Iskandar Perak Darul Ridzuan Malaysia School of Computer Science and Engineering University of West Bohemia Plzen School of Quantitative Sciences UUMCAS Universiti Utara Malaysia Kedah Malaysia Centre for Artificial Intelligence Technology Faculty of Information Science and Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi Selangor Malaysia Centre for Modelling & Data Science Faculty of Science & Technology Universiti Kebangsaan Malaysia 43600 UKM Bangi Selangor Malaysia
This paper discusses the application of the new cubic Timmer triangular patches constructed by Ali et al. [1] to interpolate the irregularly scattered data with C 1 continuity. In order to apply the cubic Timmer trian...
来源: 评论
Counting People Based on Linear, Weighted, and Local Random Forests
Counting People Based on Linear, Weighted, and Local Random ...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA)
作者: Helia Farhood Xiangjian He Wenjing Jia Michael Blumenstein Hanhui Li Global Big Data Technologies Centre University of Technology Sydney Sydney Australia Centre for Artificial Intelligence University of Technology Sydney Sydney Australia School of Data and Computer Science Sun Yat-sen University Guangzhou China
Recently, many works have been published for counting people. However, when being applied to real-world train station videos, they have exposed many limitations due to problems such as low resolution, heavy occlusion,... 详细信息
来源: 评论
A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology
arXiv
收藏 引用
arXiv 2018年
作者: Iglesias, Juan Eugenio Insausti, Ricardo Lerma-Usabiaga, Garikoitz Bocchetta, Martina van Leemput, Koen Greve, Douglas N. van der Kouwe, Andre Fischl, Bruce Caballero-Gaudes, César Paz-Alonso, Pedro M. Department of Medical Physics and Biomedical Engineering University College London United Kingdom BCBL. Basque Center on Cognition Brain and Language Spain Human Neuroanatomy Laboratory University of Castilla-La Mancha Spain Dementia Research Centre Department of Neurodegenerative Disease Institute of Neurology University College London United Kingdom Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School United States Department of Applied Mathematics and Computer Science Technical University of Denmark MIT Computer Science and Artificial Intelligence Laboratory United States
The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of... 详细信息
来源: 评论
Towards Automatic Construction of Diverse,High-quality Image datasets
arXiv
收藏 引用
arXiv 2017年
作者: Yao, Yazhou Zhang, Jian Shen, Fumin Liu, Li Zhu, Fan Zhang, Dongxiang Shen, Heng Tao Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates Global Big Data Technologies Center University of Technology Sydney Australia School of Computer Science and Engineering University of Electronic Science and Technology of China
The availability of labeled image datasets has been shown critical for high-level image understanding, which continuously drives the progress of feature designing and models developing. However, constructing labeled i... 详细信息
来源: 评论
Publisher Correction: The default network of the human brain is associated with perceived social isolation
收藏 引用
Nature communications 2021年 第1期12卷 3202页
作者: R Nathan Spreng Emile Dimas Laetitia Mwilambwe-Tshilobo Alain Dagher Philipp Koellinger Gideon Nave Anthony Ong Julius M Kernbach Thomas V Wiecki Tian Ge Yue Li Avram J Holmes B T Thomas Yeo Gary R Turner Robin I M Dunbar Danilo Bzdok Laboratory of Brain and Cognition Montreal Neurological Institute Department of Neurology and Neurosurgery Faculty of Medicine McGill University Montreal QC Canada. nathan.spreng@***. Departments of Psychiatry and Psychology McGill University Montreal QC Canada. nathan.spreng@***. Douglas Mental Health University Institute Verdun QC HRH 1R3 Canada. nathan.spreng@***. McConnell Brain Imaging Centre Montreal Neurological Institute (MNI) McGill University Montreal QC Canada. nathan.spreng@***. Department of Biomedical Engineering Faculty of Medicine McGill University Montreal QC Canada. Laboratory of Brain and Cognition Montreal Neurological Institute Department of Neurology and Neurosurgery Faculty of Medicine McGill University Montreal QC Canada. McConnell Brain Imaging Centre Montreal Neurological Institute (MNI) McGill University Montreal QC Canada. School of Business and Economics Vrije Universiteit Amsterdam Amsterdam The Netherlands. Marketing Department the Wharton School University of Pennsylvania Pennsylvania PA USA. Department of Human Development Cornell University Ithaca NY USA. Division of Geriatrics and Palliative Medicine Weill Cornell Medical College New York NY USA. Department of Neurosurgery Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA) RWTH Aachen University Hospital Aachen Germany. Quantopian Inc. Boston MA USA. Psychiatric and Neurodevelopmental Genetics Unit Center for Genomic Medicine Massachusetts General Hospital Boston MA 02114 USA. Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA 02114 USA. Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown MA 02129 USA. Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge MA 02138 USA. School of Computer Science McGill University Montreal QC Canada. Departments of Psychology and Psychiatry Yale University New Haven CA 06520 USA. Depa
来源: 评论
Learning student networks via feature embedding
arXiv
收藏 引用
arXiv 2018年
作者: Chen, Hanting Wang, Yunhe Xu, Chang Xu, Chao Tao, Dacheng Coopertative Medianet Innovation Center School of EECS Peking University Beijing100871 China Noah’s Ark Laboratory Huawei Technologies Co. Ltd HuaWei Building No.3 Xinxi Road Shang-Di Information Industri Base Hai-Dian District Beijing100085 China UBTech Sydney Artificial Intelligence Centre School of Computer Science Faculty of Engineering and Information Technologies University of Sydney J12 Cleveland St DarlingtonNSW2008 Australia
—Deep convolutional neural networks have been widely used in numerous applications, but their demanding storage and computational resource requirements prevent their applications on mobile devices. Knowledge distilla... 详细信息
来源: 评论