咨询与建议

限定检索结果

文献类型

  • 1,324 篇 期刊文献
  • 1,266 篇 会议
  • 11 册 图书

馆藏范围

  • 2,601 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,651 篇 工学
    • 1,228 篇 计算机科学与技术...
    • 999 篇 软件工程
    • 381 篇 信息与通信工程
    • 271 篇 控制科学与工程
    • 249 篇 生物工程
    • 220 篇 电气工程
    • 209 篇 生物医学工程(可授...
    • 192 篇 光学工程
    • 120 篇 电子科学与技术(可...
    • 107 篇 网络空间安全
    • 80 篇 机械工程
    • 80 篇 化学工程与技术
    • 79 篇 仪器科学与技术
    • 60 篇 动力工程及工程热...
    • 55 篇 交通运输工程
  • 888 篇 理学
    • 430 篇 数学
    • 295 篇 生物学
    • 238 篇 物理学
    • 175 篇 统计学(可授理学、...
    • 111 篇 化学
    • 64 篇 系统科学
  • 531 篇 管理学
    • 322 篇 管理科学与工程(可...
    • 233 篇 图书情报与档案管...
    • 159 篇 工商管理
  • 220 篇 医学
    • 175 篇 临床医学
    • 150 篇 基础医学(可授医学...
    • 102 篇 公共卫生与预防医...
    • 91 篇 药学(可授医学、理...
  • 86 篇 法学
    • 78 篇 社会学
  • 58 篇 经济学
    • 58 篇 应用经济学
  • 48 篇 农学
  • 31 篇 教育学
  • 17 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 132 篇 accuracy
  • 120 篇 deep learning
  • 91 篇 machine learning
  • 81 篇 training
  • 78 篇 feature extracti...
  • 72 篇 convolutional ne...
  • 70 篇 real-time system...
  • 56 篇 computational mo...
  • 50 篇 artificial intel...
  • 49 篇 predictive model...
  • 48 篇 optimization
  • 43 篇 data models
  • 41 篇 internet of thin...
  • 37 篇 support vector m...
  • 35 篇 reinforcement le...
  • 35 篇 semantics
  • 32 篇 security
  • 32 篇 federated learni...
  • 31 篇 genetic programm...
  • 31 篇 decision making

机构

  • 77 篇 maharishi school...
  • 53 篇 centre of interd...
  • 44 篇 department of ar...
  • 39 篇 vishwakarma inst...
  • 35 篇 centre for artif...
  • 34 篇 institute of pho...
  • 33 篇 school of comput...
  • 32 篇 department of co...
  • 27 篇 shenzhen institu...
  • 27 篇 school of comput...
  • 24 篇 centre of resear...
  • 23 篇 school of comput...
  • 22 篇 guangdong key la...
  • 22 篇 vivekananda glob...
  • 21 篇 chitkara centre ...
  • 19 篇 chitkara univers...
  • 19 篇 department of el...
  • 18 篇 shanghai artific...
  • 18 篇 school of artifi...
  • 17 篇 chitkara univers...

作者

  • 50 篇 zhang mengjie
  • 44 篇 tao dacheng
  • 34 篇 xue bing
  • 23 篇 min gu
  • 19 篇 mei yi
  • 16 篇 ding weiping
  • 15 篇 shen linlin
  • 15 篇 mengjie zhang
  • 14 篇 ghojogh benyamin
  • 13 篇 seifedine kadry
  • 13 篇 li tianrui
  • 13 篇 wang meng
  • 13 篇 mirjalili seyeda...
  • 12 篇 bing xue
  • 12 篇 ketan kotecha
  • 12 篇 ghodsi ali
  • 12 篇 iglesias juan eu...
  • 12 篇 xiong hui
  • 12 篇 bhuvaneshwari k....
  • 12 篇 du bo

语言

  • 2,210 篇 英文
  • 372 篇 其他
  • 28 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Centre for Data Science and Artificial Intelligence&School of Engineering and Computer Science"
2601 条 记 录,以下是2581-2590 订阅
排序:
Prompt-based Code Completion via Multi-Retrieval Augmented Generation
收藏 引用
ACM Transactions on Software engineering and Methodology 1000年
作者: Hanzhuo Tan Qi Luo Ling Jiang Zizheng Zhan Jing Li Haotian Zhang Yuqun Zhang Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology China Department of Computer Science and Engineering Southern University of Science and Technology China Kuaishou Technology China Department of Computing and the Research Centre on Data Science and Artificial Intelligence (RCDSAI) the Hong Kong Polytechnic University China
Automated code completion, aiming at generating subsequent tokens from unfinished code, has significantly benefited from recent progress in pre-trained Large Language Models (LLMs). However, these models often suffer ... 详细信息
来源: 评论
Graph artificial intelligence in Medicine
收藏 引用
Biomedical data science 1000年 第1期7卷 345-368页
作者: Ruth Johnson Michelle M. Li Ayush Noori Owen Queen Marinka Zitnik 1Department of Biomedical Informatics Harvard Medical School Boston Massachusetts USA email: marinka@hms.harvard.edu 2Berkowitz Family Living Laboratory Harvard Medical School Boston Massachusetts USA 3Bioinformatics and Integrative Genomics Program Harvard Medical School Boston Massachusetts USA 4Department of Computer Science Harvard John A. Paulson School of Engineering and Applied Sciences Allston Massachusetts USA 5Broad Institute of MIT and Harvard Cambridge Massachusetts USA 7Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University Allston Massachusetts USA 6Harvard Data Science Initiative Cambridge Massachusetts USA
In clinical artificial intelligence (AI), graph representation learning, mainly through graph neural networks and graph transformer architectures, stands out for its capability to capture intricate relationships and s...
来源: 评论
Handbook of Evolutionary Machine Learning  1
收藏 引用
丛书名: Genetic and Evolutionary Computation
1000年
作者: Wolfgang Banzhaf Penousal Machado Mengjie Zhang
This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine lear... 详细信息
来源: 评论
Camera-Based Document Analysis and Recognition  1
收藏 引用
丛书名: Lecture Notes in computer science
1000年
作者: Masakazu Iwamura Faisal Shafait
This book constitutes the thoroughly refereed post-workshop-proceedings of the 4th International Workshop on Camera-Based Document Analysis and Recognition, CBDAR 2011, held in Beijing, China, in September 2011. The 1... 详细信息
来源: 评论
Learning, Teaching, and Assessment Methods for Contemporary Learners  1
收藏 引用
丛书名: Springer Texts in Education
1000年
作者: K. G. Srinivasa Muralidhar Kurni Kuppala Saritha
This textbook tackles the matter of contemporary learners’ needs, and introduces modern learning, teaching, and assessment methods. It provides a deeper understanding of these methods so that the students and teacher... 详细信息
来源: 评论
Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo
收藏 引用
ACM Computing Surveys 1000年
作者: Yuan Jin Antonio Pepe Jianning Li Christina Gsaxner Yuxuan Chen Behrus Puladi Fen-hua Zhao Kelsey Pomykala Jens Kleesiek Alejandro Frangi Jan Egger Institute of Computer Graphics and Vision Graz University of Technology Graz Austria Research Centre for Frontier Fundamental Studies Zhejiang Lab Hangzhou China Institute of Computer Graphics and Vision Graz University of Technology Graz Austria Institute for Artificial Intelligence in Medicine Essen University Hospital (AöR) Essen Germany Zhejiang Laboratory of Philosophy and Social Sciences - Laboratory of Intelligent Society and Governance Zhejiang Lab Hangzhou China Institute of Medical Informatics RWTH Aachen University Aachen Germany Wenzhou Medical University Affiliated Dongyang Hospital Dongyang China Cancer Research Center Cologne Essen Essen Germany German Cancer Consortium Heidelberg Germany Christabel Pankhurst Institute The University of Manchester Manchester United Kingdom of Great Britain and Northern Ireland School of Health Sciences The University of Manchester Division of Informatics Imaging and Data Sciences Manchester United Kingdom of Great Britain and Northern Ireland The University of Manchester School of Computer Science Manchester United Kingdom of Great Britain and Northern Ireland Manchester University NHS Foundation Trust Manchester United Kingdom of Great Britain and Northern Ireland Insitute of Artificial Intelligence in Medicine Essen University Hospital (AöR) Essen Germany Computer Algorithms for Medicine Laboratory Graz Austria Cancer Research Center Cologne Essen (CCCE) Essen Germany
The aortic vessel tree, composed of the aorta and its branches, is crucial for blood supply to the body. Aortic diseases, such as aneurysms and dissections, can lead to life-threatening ruptures, often requiring open ... 详细信息
来源: 评论
LLMCDSR: Enhancing Cross-Domain Sequential Recommendation with Large Language Models
收藏 引用
ACM Transactions on Information Systems 1000年
作者: Haoran Xin Ying Sun Chao Wang Hui Xiong Thrust of Artificial Intelligence The Hong Kong University of Science and Technology (Guangzhou) China School of Artificial Intelligence and Data Science University of Science and Technology of China China Thrust of Artificial Intelligence The Hong Kong University of Science and Technology (Guangzhou) China and Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR China
Cross-Domain Sequential Recommendation (CDSR) aims to predict users’ preferences based on historical sequential interactions across multiple domains. Existing works focus on the overlapped users who interact in multi... 详细信息
来源: 评论
Quality of Work-Life During Pandemic  1
收藏 引用
丛书名: Studies in Big data
1000年
作者: Gitanjali Rahul Shinde Soumi Majumder Haribhau R. Bhapkar Parikshit N. Mahalle
This book is focused on the impact of the COVID-19 pandemic on different sectors, i.e., education, real estate, health, and agriculture. The lockdown has been announced to control the spread of COVID-19 infections, ho... 详细信息
来源: 评论
Interpreting Deep Forest through Feature Contribution and MDI Feature Importance
收藏 引用
ACM Transactions on Knowledge Discovery from data 1000年
作者: Yi-Xiao He Shen-Huan Lyu Yuan Jiang National Key Laboratory for Novel Software Technology and School of Artificial Intelligence Nanjing University China Key Laboratory of Water Big Data Technology of Ministry of Water Resources and College of Computer Science and Software Engineering Hohai University China
Deep forest is a non-differentiable deep model that has achieved impressive empirical success across a wide variety of applications, especially on categorical/symbolic or mixed modeling tasks. Many of the application ... 详细信息
来源: 评论
Feature Disentanglement Based Heterogeneous Defect Prediction
收藏 引用
ACM Transactions on Software engineering and Methodology 1000年
作者: Xu Yu Jiaqi Yan Qinqin Gao Qinglong Peng Bin Yu Junwei Du Ying Xing Dunwei Gong Qingdao Institute of Software China University of Petroleum East China) Qingdao China College of Computer Science and Technology China University of Petroleum East China) Qingdao China Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software China University of Petroleum East China) Qingdao China School of Data Science Qingdao University of Science and Technology Qingdao China Key Laboratory of Symbol Computation and Knowledge Engineering Jilin University Changchun China School of Data Science Qingdao University of Science and Technology Qingdao China School of Computer and Information Technology Beijing Jiaotong University Beijing China School of Data Science Qingdao University of Science and TechnologyQingdao China School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Yunnan Key Laboratory of Software Engineering Kunming China College of Automation and Electronic Engineering Qingdao University of Science and Technology Qingdao China
Cross-project defect prediction (CPDP) utilizes the existing labeled data in the source project to assist with the prediction of unlabeled projects in the target dataset, which effectively improves the prediction perf... 详细信息
来源: 评论