咨询与建议

限定检索结果

文献类型

  • 36 篇 期刊文献
  • 9 篇 会议
  • 2 册 图书

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 23 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 21 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 12 篇 生物工程
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 5 篇 信息与通信工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 安全科学与工程
  • 30 篇 理学
    • 16 篇 物理学
    • 16 篇 生物学
    • 11 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 4 篇 magnetic resonan...
  • 2 篇 medical imaging
  • 2 篇 visualization
  • 2 篇 computational sc...
  • 2 篇 tumors
  • 2 篇 image processing...
  • 2 篇 statistics for l...
  • 1 篇 computer-aided m...
  • 1 篇 computer science
  • 1 篇 image acquisitio...
  • 1 篇 convolutional bi...
  • 1 篇 simulation and m...
  • 1 篇 semantic segment...
  • 1 篇 database systems
  • 1 篇 brain age
  • 1 篇 data privacy
  • 1 篇 diffusion tensor...
  • 1 篇 deep learning
  • 1 篇 theoretical, mat...
  • 1 篇 deep neural netw...

机构

  • 6 篇 centre for medic...
  • 4 篇 department of ne...
  • 4 篇 department of ra...
  • 4 篇 department of co...
  • 4 篇 centre for stati...
  • 4 篇 heidelberg
  • 3 篇 department of ch...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 university of pe...
  • 3 篇 paris brain inst...
  • 3 篇 department of ra...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 department of ch...
  • 3 篇 cea drf joliot n...
  • 3 篇 national imaging...

作者

  • 6 篇 shemesh noam
  • 6 篇 alexander daniel...
  • 5 篇 glocker ben
  • 5 篇 palombo marco
  • 5 篇 landman bennett ...
  • 4 篇 bakas spyridon
  • 4 篇 drobnjak ivana
  • 4 篇 meijering erik
  • 4 篇 grussu francesco
  • 4 篇 reyes mauricio
  • 4 篇 jelescu ileana o...
  • 4 篇 srivastava gauta...
  • 4 篇 collins gary s.
  • 4 篇 ianus andrada
  • 3 篇 kreshuk anna
  • 3 篇 zhang jiangyang
  • 3 篇 wu dan
  • 3 篇 rajpoot nasir
  • 3 篇 kozubek michal
  • 3 篇 haase robert

语言

  • 45 篇 英文
  • 2 篇 其他
检索条件"机构=Centre for Medical Image Computing and Dept. Computer Science"
47 条 记 录,以下是1-10 订阅
排序:
Brain Latent Progression: Individual-based Spatiotemporal Disease Progression on 3D Brain MRIs via Latent Diffusion
arXiv
收藏 引用
arXiv 2025年
作者: Puglisi, Lemuel Alexander, Daniel C. Ravì, Daniele Dept. of Math and Computer Science University of Catania Viale Andrea Doria 6 Catania Italy Centre for Medical Image Computing University College London 90 High Holborn London United Kingdom MIFT Department University of Messina Viale Ferdinando Stagno d’Alcontres 31 Messina Italy
The growing availability of longitudinal Magnetic Resonance Imaging (MRI) datasets has facilitated Artificial Intelligence (AI)-driven modeling of disease progression, making it possible to predict future medical scan... 详细信息
来源: 评论
Developing undevelopable surfaces using particle systems
Developing undevelopable surfaces using particle systems
收藏 引用
作者: Weiler, Florian Plath, Jan MeVis Research Center for Medical Image Computing Bremen Germany Universität Bremen Dept. of Mathematics/Computer Science Bremen Germany
This paper presents a new approach for calculating a development of an undevelopable surface using a particle system. An undevelopable surface is any surface that cannot be flattened into a map without stretching, tea... 详细信息
来源: 评论
A fast and robust graph-based approach for boundary estimation of fiber bundles relying on fractional anisotropy maps
A fast and robust graph-based approach for boundary estimati...
收藏 引用
2010 20th International Conference on Pattern Recognition, ICPR 2010
作者: Bauer, M.H.A. Egger, J. O'Donnell, T. Barbieri, S. Klein, J. Freisleben, B. Hahn, H.-K. Nimsky, C. Dept. of Neurosurgery University of Marburg Germany Dept. of Math. and Computer Science University of Marburg Germany Dept. of Imaging and Visualization Siemens Corporate Research Princeton United States Institute for Medical Image Computing Fraunhofer MEVIS Bremen Germany
In this paper, a fast and robust graph-based approach for boundary estimation of fiber bundles derived from Diffusion Tensor Imaging (DTI) is presented. DTI is a non-invasive imaging technique that allows the estimati... 详细信息
来源: 评论
Computational diffusion MRI: MICCAI workshop, Munich, Germany,october 9th, 2015
收藏 引用
Workshop on Computational Diffusion MRI, MICCAI 2015
作者: Fuster, Andrea Ghosh, Aurobrata Kaden, Enrico Rathi, Yogesh Reisert, Marco Dept. of Mathematics and Computer Science Eindhoven University of Technology Eindhoven Netherlands Centre for Medical Image Computing University College London London United Kingdom Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Radiology University Medical Center Freiburg Germany
来源: 评论
Blockchain-based federated learning with checksums to increase security in Internet of Things solutions
收藏 引用
Journal of Ambient Intelligence and Humanized computing 2023年 第5期14卷 4685-4694页
作者: Prokop, Katarzyna Polap, Dawid Srivastava, Gautam Lin, Jerry Chun-Wei Faculty of Applied Mathematics Silesian University of Technology Kaszubska 23 Gliwice44-100 Poland Dept. of Math and Computer Science Brandon University BrandonMBR7A 6A9 Canada Research Centre for Interneural Computing China Medical University Taichung Taiwan Western Norway University of Applied Sciences Bergen Norway Dept. of Computer Science and Math Lebanese American University Beirut1102 Lebanon
Federated learning is becoming a practical solution for machine learning (ML) in industry. This is due to the possibility of implementing artificial intelligence (AI) systems and training its models on priva... 详细信息
来源: 评论
Computational Diffusion MRI and Brain Connectivity  1
收藏 引用
丛书名: Mathematics and Visualization
1000年
作者: Thomas Schultz Gemma Nedjati-Gilani Eleftheria Panagiotaki Archana Venkataraman Lauren O'Donnell
来源: 评论
A generative model of realistic brain cells with application to numerical simulation of diffusionweighted MR signal
arXiv
收藏 引用
arXiv 2018年
作者: Palombo, Marco Alexander, Daniel C. Zhang, Hui Centre for Medical Image Computing and Dept of Computer Science University College London London United Kingdom
In this work, we introduce a novel computational framework that we developed to use numerical simulations to investigate the complexity of brain tissue at a microscopic level with a detail never realised before. Direc... 详细信息
来源: 评论
DEVELOPING UNDEVELOPABLE SURFACES USING PARTICLE SYSTEMS
收藏 引用
IFAC Proceedings Volumes 2007年 第1期40卷 286-291页
作者: Florian Weiler Jan Plath MeVis Research Center for Medical Image Computing Bremen Germany formerly Universität Bremen Dept. of Mathematics/Computer Science Bremen Germany Universität Bremen Dept. of Mathematics/Computer Science Bremen Germany
This paper presents a new approach for calculating a development of an undevelopable surface using a particle system. An undevelopable surface is any surface that cannot be flattened into a map without stretching, tea... 详细信息
来源: 评论
Incomplete nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping
arXiv
收藏 引用
arXiv 2019年
作者: Ianuş, Andrada Shemesh, Noam Champalimaud Neuroscience Programme Champalimaud Centre for the Unknown Lisbon Portugal Centre for Medical Image Computing Dept. of Computer Science University College London London United Kingdom
Purpose: Diffusion Magnetic Resonance Imaging (dMRI) is confounded by its long acquisition duration, thereby thwarting the detection of rapid microstructural changes, especially when diffusivity variations are accompa... 详细信息
来源: 评论
Computational Diffusion MRI  1
收藏 引用
丛书名: Mathematics and Visualization
1000年
作者: Andrea Fuster Aurobrata Ghosh Enrico Kaden Yogesh Rathi Marco Reisert
Over thelast decade interest in diffusion MRI has exploded. The technique providesunique insights into the microstructure of living tissue and enables in-vivoconnectivity mapping of the brain. Computational techniques... 详细信息
来源: 评论