咨询与建议

限定检索结果

文献类型

  • 729 篇 期刊文献
  • 580 篇 会议
  • 25 册 图书

馆藏范围

  • 1,334 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 886 篇 工学
    • 564 篇 计算机科学与技术...
    • 451 篇 软件工程
    • 153 篇 信息与通信工程
    • 138 篇 光学工程
    • 132 篇 电气工程
    • 130 篇 生物医学工程(可授...
    • 125 篇 电子科学与技术(可...
    • 118 篇 生物工程
    • 103 篇 控制科学与工程
    • 100 篇 仪器科学与技术
    • 46 篇 机械工程
    • 43 篇 航空宇航科学与技...
    • 38 篇 化学工程与技术
    • 33 篇 动力工程及工程热...
  • 579 篇 理学
    • 278 篇 物理学
    • 183 篇 数学
    • 134 篇 生物学
    • 81 篇 化学
    • 77 篇 地球物理学
    • 62 篇 统计学(可授理学、...
    • 40 篇 系统科学
  • 203 篇 管理学
    • 120 篇 管理科学与工程(可...
    • 83 篇 图书情报与档案管...
    • 75 篇 工商管理
  • 131 篇 医学
    • 111 篇 临床医学
    • 100 篇 基础医学(可授医学...
    • 60 篇 药学(可授医学、理...
    • 50 篇 公共卫生与预防医...
  • 28 篇 法学
    • 22 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 15 篇 教育学
  • 5 篇 文学
  • 5 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 45 篇 computational mo...
  • 39 篇 deep learning
  • 32 篇 machine learning
  • 27 篇 neutrons
  • 27 篇 accuracy
  • 25 篇 computer science
  • 22 篇 distributed comp...
  • 20 篇 magnetic resonan...
  • 19 篇 artificial intel...
  • 16 篇 feature extracti...
  • 16 篇 forecasting
  • 16 篇 training
  • 15 篇 concurrent compu...
  • 15 篇 computer archite...
  • 15 篇 predictive model...
  • 15 篇 convolutional ne...
  • 14 篇 image segmentati...
  • 14 篇 visualization
  • 14 篇 semantics
  • 14 篇 decision making

机构

  • 95 篇 institut univers...
  • 94 篇 north-west unive...
  • 94 篇 tno technical sc...
  • 92 篇 national centre ...
  • 89 篇 université de st...
  • 89 篇 nikhef national ...
  • 88 篇 infn sezione di ...
  • 85 篇 university of jo...
  • 85 篇 ncsr demokritos ...
  • 84 篇 infn sezione di ...
  • 83 篇 infn sezione di ...
  • 82 篇 infn sezione di ...
  • 80 篇 infn sezione di ...
  • 78 篇 western sydney u...
  • 78 篇 università la sa...
  • 75 篇 university würzb...
  • 75 篇 university moham...
  • 72 篇 university of am...
  • 72 篇 tbilisi state un...
  • 70 篇 università di sa...

作者

  • 97 篇 ferrara g.
  • 97 篇 ardid m.
  • 96 篇 calvo d.
  • 93 篇 chen a.
  • 88 篇 gal t.
  • 88 篇 bozza c.
  • 88 篇 díaz a.f.
  • 88 篇 boumaaza j.
  • 87 篇 coleiro a.
  • 87 篇 gozzini s.r.
  • 87 篇 dallier r.
  • 87 篇 enzenhöfer a.
  • 87 篇 celli s.
  • 85 篇 bendahman m.
  • 85 篇 brunner j.
  • 85 篇 cherubini s.
  • 84 篇 boettcher m.
  • 84 篇 carretero v.
  • 84 篇 di palma i.
  • 84 篇 giorgio e.

语言

  • 1,195 篇 英文
  • 132 篇 其他
  • 7 篇 中文
  • 1 篇 德文
检索条件"机构=Centre for Parallel Computing School of Computer Science and Engineering"
1334 条 记 录,以下是631-640 订阅
排序:
Corrigendum to “Hybridizing flower pollination algorithm with particle swarm optimization for enhancing the performance of IPv6 intrusion detection system” [Alex. Eng. J. 104 (2024) 504–514]
收藏 引用
Alexandria engineering Journal 2025年 110卷 376-376页
作者: Adnan Hasan Bdair AIghuraibawi Selvakumar Manickam Zaid Abdi Alkareem Alyasseri Rosni Abdullah Ayman Khallel Riyadh Rahef Nuiaa Al Ogaili Fahd N. Al-Wesabi Abdulsamad Ebrahim Yahya National Advanced IPv6 Centre (NAv6)  Universiti Sains Malaysia Penang 11800 Malaysia Baghdad College of Economic Sciences University  Baghdad Iraq Information Technology Research and Development Center University of Kufa Najaf Iraq College of Engineering University of Warith Al-Anbiyaa Karbala Iraq School of Computer Sciences Universiti Sains Malays Penang 11800 Malaysia Faculty of Computing and Informatics Universiti Malaysia Sabah Sabah Malaysia Department of Cybersecurity Engineering Technology Al Hikma University College Baghdad Iraq Department of Computer Science/ College of Computer Science and Information Technology Wasit University Kut Wasit 52001 Iraq Department of Computer Science College of Science & Art at Mahayil King Khalid University Saudi Arabia Department of Information Technology College of Computing and Information Technology Northern Border University Arar Saudi Arabia
来源: 评论
CyberSentry: Enhancing SCADA Security through Advanced Deep Learning and Optimization Strategies
收藏 引用
International Journal of Critical Infrastructure Protection 2025年
作者: Alaa O. Khadidos Adil O. Khadidos Shitharth Selvarajan Taher Al-Shehari Nasser A Alsadhan Subhav Singh Department of Information Systems Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia Center of Research Excellence in Artificial Intelligence and Data Science King Abdulaziz University Jeddah Saudi Arabia Department of Information Technology Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia School of Built Environment Engineering and Computing Leeds Beckett University LS1 3HE Leeds U.K Department of Computer Science and Engineering Chennai Institute of Technology Chennai India Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Punjab Rajpura 140401 India Computer Skills Department of Self-Development Skill Common First Year Deanship King Saud University 11362 Riyadh Saudi Arabia Computer Science Department College of Computer and Information Sciences King Saud University Riyadh 12372 Saudi Arabia Chitkara Centre for Research and Development Chitkara University Himachal Pradesh-174103 India Division of research and development Lovely Professional University Phagwara Punjab India
SCADA systems form the core of infrastructural facilities, including power grids, water treatment facilities, and industrial processes. Changing cyber threats present increasingly sophisticated attacks against which t... 详细信息
来源: 评论
Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
SSRN
收藏 引用
SSRN 2024年
作者: Atmakuru, Anirudh Shahini, Alen Chakraborty, Subrata Seoni, Silivia Salvi, Massimo Hafeez-Baig, Abdul Rashid, Sadaf Tan, Ru San Barua, Prabal Datta Molinari, Filippo Acharya, U. Rajendra Manning College of Information and Computer Sciences University of Massachusetts AmherstMA United States Biolab PolitoBIOMedLab Department of Electronics and Telecommunications Politecnico di Torino Corso Duca degli Abruzzi 24 Turin10129 Italy Faculty of Science Agriculture Business and Law University of New England ArmidaleNSW2531 Australia Faculty of Engineering and IT University of Technology Sydney SydneyNSW2007 Australia Biolab Department of Electronics and Telecommunications Politecnico di Torino Corso Duca degli Abruzzi 24 Turin10129 Italy Department of Electronics and Telecommunications Politecnico di Torino Corso Duca degli Abruzzi 24 Turin10129 Italy School of Management and Enterprise University of Southern Queensland ToowoombaQLD Australia Sunshine Coast Hospital and Health Service Queensland Australia Department of Cardiology National Heart Centre Singapore Singapore Duke-NUS Medical School Singapore University of Southern Queensland Australia School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia
Suicide is a major global public health concern, and the application of artificial intelligence (AI) methods, such as natural language processing, machine learning, and deep learning, has shown promise in advancing su... 详细信息
来源: 评论
Improving unsupervised domain adaptation by reducing bi-level feature redundancy
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Mengzhu Zhang, Xiang Lan, Long Wang, Wei Tan, Huibin Luo, Zhigang Science and Technology on Parallel and Distributed Laboratory College of Computer National University of Defense Technology Changsha China Institute for Quantum State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China DUT-RU International School of Information Science & Engineering Dalian University of Technology DalianLiaoning116000 China Department of Science and Technology on Parallel and Distributed Processing National University of Defense Technology Changsha China
Reducing feature redundancy has shown beneficial effects for improving the accuracy of deep learning models, thus it is also indispensable for the models of unsupervised domain adaptation (UDA). Nevertheless, most rec... 详细信息
来源: 评论
Interpolation-Split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
arXiv
收藏 引用
arXiv 2023年
作者: Cheung, Wing Keung Pakzad, Ashkan Mogulkoc, Nesrin Needleman, Sarah Rangelov, Bojidar Gudmundsson, Eyjolfur Zhao, An Abbas, Mariam McLaverty, Davina Asimakopoulos, Dimitrios Chapman, Robert Savas, Recep Janes, Sam M. Hu, Yipeng Alexander, Daniel C. Hurst, John R. Jacob, Joseph Satsuma Lab Centre for Medical Image Computing University College London London United Kingdom Department of Computer Science University College London London United Kingdom Department of Medical Physics and Biomedical Engineering University College London London United Kingdom Department of Respiratory Medicine Ege University Hospital Izmir Turkey Medical School University College London London United Kingdom School of Clinical Medicine University of Cambridge Cambridge United Kingdom Interstitial Lung Disease Service Department of Respiratory Medicine University College London Hospitals NHS Foundation Trust London United Kingdom Department of Radiology Ege University Hospital Izmir Turkey Lungs for Living Research Centre UCL London United Kingdom UCL Respiratory University College London London United Kingdom Respiratory Medicine Royal Free London NHS Foundation Trust London United Kingdom
The morphology and distribution of airway tree abnormalities enables diagnosis and disease characterisation across a variety of chronic respiratory conditions. In this regard, airway segmentation plays a critical role... 详细信息
来源: 评论
On the Philosophical, Cognitive and Mathematical Foundations of Symbiotic Autonomous Systems (SAS)
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Yingxu Karray, Fakhri Kwong, Sam Plataniotis, Konstantinos N. Leung, Henry Hou, Ming Tunstel, Edward Rudas, Imre J. Trajkovic, Ljiljana Kaynak, Okyay Kacprzyk, Janusz Zhou, Mengchu Smith, Michael H. Chen, Philip Patel, Shushma University of Calgary Canada FIEEE Dept. of Electrical & Computer Engineering University of Waterloo ON Canada FIEEE Department of Computer Science City University of Hong Kong Hong Kong FIEEE Dept. of Electrical & Computer Engineering University of Toronto ON Canada SMIEEE Toronto Research Centre DRDC Canada FIEEE Autonomous & Intelligent Systems Dept. Raytheon Technologies Research Center United States Óbuda University Budapest Hungary FIEEE School of Engineering Science Simon Fraser University BurnabyBC Canada FIEEE Bogazici University Bebek Istanbul Turkey FIEEE Systems Research Institute Polish Academy of Sciences Warsaw Poland FIEEE Dept. of Computer Science New Jersey Institute of Technology NJ United States SMIEEE Furaxa Inc. OrindaCA United States FIEEE School of Computer Science and Engineering South China University of Technology Guangzhou China FBCS Faculty of Computing Engineering and Media De Montfort University LeicesterLE1 9BH United Kingdom
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence enabled by coherent symbiosis of human-machine interactions in hybrid societies. Basic re... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun Xie, Ronald Ayyadhury, Shamini Ge, Cheng Gupta, Anubha Gupta, Ritu Gu, Song Zhang, Yao Lee, Gihun Kim, Joonkee Lou, Wei Li, Haofeng Upschulte, Eric Dickscheid, Timo de Almeida, José Guilherme Wang, Yixin Han, Lin Yang, Xin Labagnara, Marco Gligorovski, Vojislav Scheder, Maxime Rahi, Sahand Jamal Kempster, Carly Pollitt, Alice Espinosa, Leon Mignot, Tâm Middeke, Jan Moritz Eckardt, Jan-Niklas Li, Wangkai Li, Zhaoyang Cai, Xiaochen Bai, Bizhe Greenwald, Noah F. Van Valen, David Weisbart, Erin Cimini, Beth A. Cheung, Trevor Brück, Oscar Bader, Gary D. Wang, Bo Peter Munk Cardiac Centre University Health Network TorontoON Canada Department of Laboratory Medicine and Pathobiology University of Toronto TorontoON Canada Vector Institute TorontoON Canada Department of Molecular Genetics University of Toronto TorontoON Canada Donnelly Centre University of Toronto TorontoON Canada Princess Margaret Cancer Centre University Health Network TorontoON Canada School of Medicine and Pharmacy Ocean University of China Qingdao China New Delhi India Laboratory Oncology Dr. BRA-IRCH All India Institute of Medical Sciences New Delhi India Department of Image Reconstruction Nanjing Anke Medical Technology Co. Ltd. Nanjing China Shanghai Artificial Intelligence Laboratory Shanghai China Graduate School of AI KAIST Seoul Korea Republic of Shenzhen Research Institute of Big Data Shenzhen China Shenzhen China Helmholtz AI Research Center Jülich Jülich Germany Faculty of Mathematics and Natural Sciences Institute of Computer Science Heinrich Heine University Düsseldorf Düsseldorf Germany Hinxton United Kingdom Champalimaud Foundation - Centre for the Unknown Lisbon Portugal Department of Bioengineering Stanford University Palo AltoCA United States Tandon School of Engineering New York University New YorkNY United States School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Lausanne Switzerland School of Biological Sciences University of Reading Reading United Kingdom Laboratoire de Chimie Bactérienne CNRS Université Aix Marseille UMR Institut de Microbiologie de la Méditerranée Marseille France Department of Internal Medicine I University Hospital Dresden Technical University Dresden Dresden Germany Else Kroener Fresenius Center for Digital Health Technical University Dresden Dresden Germany Department of Automation University of Science and Technology of China Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Chi
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify ... 详细信息
来源: 评论
Active interactions between animals and technology: biohybrid approaches for animal behaviour research
收藏 引用
Animal Behaviour 2025年 224卷
作者: Papadopoulou, M. Ball, M. Bartashevich, P. Burns, A.L.J. Chiara, V. Clark, M.A. Costelloe, B.R. Fele, M. French, F. Hauert, S. Heinrich, M.K. Herbert-Read, J.E. Hoitt, J. Ioannou, C.C. Landgraf, T. Matchette, S.R. Polverino, G. Sankey, D.W.E. Scott, D.M. Sridhar, V.H. Strömbom, D. Trianni, V. Vo-Doan, T.T. King, A.J. Department of Biosciences Faculty of Science and Engineering Swansea University Swansea United Kingdom Department of Biology Lafayette College Easton PA United States Institute for Theoretical Biology Department of Biology Humboldt-Universität zu Berlin Berlin Germany Cluster of Excellence ‘Science of Intelligence’ Berlin Germany Department Fish Biology Fisheries and Aquaculture Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany Faculty of Life Sciences Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität zu Berlin Berlin Germany Museum and Institute of Zoology Polish Academy of Science Warszawa Poland School of Biological Sciences University of Bristol Bristol United Kingdom School of Natural Sciences Macquarie University Sydney Australia Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany Department of Biology University of Konstanz Konstanz Germany Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany School of Computing and Digital Media London Metropolitan University London United Kingdom Bristol Robotics Laboratory University of Bristol Bristol United Kingdom IRIDIA Université Libre de Bruxelles Brussels Belgium Department of Zoology University of Cambridge Cambridge United Kingdom Department of Mathematics and Computer Science Freie Universität Berlin Berlin Germany Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy School of Natural and Environmental Science Newcastle University Newcastle upon Tyne United Kingdom Centre for Ecology and Conservation Faculty of Environment Science and Economy University of Exeter Penryn Campus Cornwall United Kingdom School of Animal Rural and Environmental Sciences Nottingham Trent University Nottingham United Kingdom Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany Ins
Biohybrid approaches (where living and engineered components are combined) provide new opportunities for advancing animal behaviour research and its applications. This review article and accompanying special issue exp... 详细信息
来源: 评论
Active learning using adaptable task-based prioritisation
arXiv
收藏 引用
arXiv 2022年
作者: Saeed, Shaheer U. Ramalhinho, João Pinnock, Mark Shen, Ziyi Fu, Yunguan Montaña-Brown, Nina Bonmati, Ester Barratt, Dean C. Pereira, Stephen P. Davidson, Brian Clarkson, Matthew J. Hu, Yipeng The Centre for Medical Image Computing Wellcome EPSRC Centre for Interventional and Surgical Sciences Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BT United Kingdom InstaDeep LondonW2 1AY United Kingdom The School of Computer Science and Engineering University of Westminster LondonW1W 6UW United Kingdom The Institute for Liver and Digestive Health University College London LondonNW3 2QG United Kingdom The Division of Surgery and Interventional Sciences University College London LondonWC1E 6BT United Kingdom
Supervised machine learning-based medical image computing applications necessitate expert label cu-ration, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset o... 详细信息
来源: 评论