咨询与建议

限定检索结果

文献类型

  • 74 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 41 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 16 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 机械工程
    • 9 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 3 篇 电气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
    • 1 篇 化学工程与技术
  • 32 篇 理学
    • 22 篇 数学
    • 14 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 3 篇 系统科学
    • 1 篇 化学
  • 17 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 艺术学

主题

  • 12 篇 data models
  • 8 篇 feature extracti...
  • 7 篇 computational mo...
  • 7 篇 bayes methods
  • 6 篇 ubiquitous compu...
  • 5 篇 autism
  • 4 篇 bluetooth
  • 4 篇 optimization
  • 4 篇 media
  • 4 篇 blogs
  • 4 篇 entropy
  • 4 篇 diseases
  • 3 篇 indexes
  • 3 篇 hidden markov mo...
  • 3 篇 cameras
  • 3 篇 pragmatics
  • 3 篇 data mining
  • 3 篇 monitoring
  • 3 篇 electrocardiogra...
  • 3 篇 predictive model...

机构

  • 36 篇 centre for patte...
  • 21 篇 centre for patte...
  • 5 篇 centre for patte...
  • 3 篇 institute for fr...
  • 3 篇 department of el...
  • 3 篇 centre for patte...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 centre of patter...
  • 2 篇 national ict aus...
  • 2 篇 deakin universit...
  • 2 篇 centre of patter...
  • 2 篇 computer science...
  • 2 篇 computer science...
  • 1 篇 pattern recognit...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 centre of patter...

作者

  • 32 篇 venkatesh svetha
  • 26 篇 phung dinh
  • 26 篇 svetha venkatesh
  • 24 篇 dinh phung
  • 10 篇 gupta sunil
  • 10 篇 sunil gupta
  • 9 篇 tran truyen
  • 9 篇 rana santu
  • 8 篇 santu rana
  • 7 篇 nguyen tu dinh
  • 6 篇 le trung
  • 6 篇 vu nguyen
  • 6 篇 nguyen thuong
  • 5 篇 ognjen arandjelo...
  • 5 篇 thuong nguyen
  • 5 篇 nguyen thin
  • 4 篇 nguyen vu
  • 4 篇 chandan karmakar
  • 4 篇 bo dao
  • 4 篇 luo wei

语言

  • 92 篇 英文
检索条件"机构=Centre for Pattern Recognition and Data Analytics"
92 条 记 录,以下是1-10 订阅
排序:
Dirichlet Process Mixture Models with Pairwise Constraints for data Clustering
收藏 引用
Annals of data Science 2016年 第2期3卷 205-223页
作者: Li, Cheng Rana, Santu Phung, Dinh Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
The Dirichlet process mixture (DPM) model, a typical Bayesian nonparametric model, can infer the number of clusters automatically, and thus performing priority in data clustering. This paper investigates the influence... 详细信息
来源: 评论
Latent sentiment topic modelling and nonparametric discovery of online mental health-related communities
收藏 引用
International Journal of data Science and analytics 2017年 第3期4卷 209-231页
作者: Dao, Bo Nguyen, Thin Venkatesh, Svetha Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University GeelongVIC3216 Australia
Social media are an online means of interaction among individuals. People are increasingly using social media, especially online communities, to discuss health concerns and seek support. Understanding topics, sentimen... 详细信息
来源: 评论
Dual space gradient descent for online learning  30
Dual space gradient descent for online learning
收藏 引用
30th Annual Conference on Neural Information Processing Systems, NIPS 2016
作者: Le, Trung Nguyen, Tu Dinh Nguyen, Vu Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University Australia
One crucial goal in kernel online learning is to bound the model size. Common approaches employ budget maintenance procedures to restrict the model sizes using removal, projection, or merging strategies. Although proj... 详细信息
来源: 评论
Streaming variational inference for dirichlet process mixtures  7
Streaming variational inference for dirichlet process mixtur...
收藏 引用
7th Asian Conference on Machine Learning, ACML 2015
作者: Huynh, Viet Phung, Dinh Venkatesh, Svetha Pattern Recognition and Data Analytics Centre Deakin University Australia
Bayesian nonparametric models are theoretically suitable to learn streaming data due to their complexity relaxation to the volume of observed data. However, most of the existing variational inference algorithms are no... 详细信息
来源: 评论
Unsupervised inference of significant locations from WiFi data for understanding human dynamics  14
Unsupervised inference of significant locations from WiFi da...
收藏 引用
13th International Conference on Mobile and Ubiquitous Multimedia, MUM 2014
作者: Nguyen, Thanh-Binh Nguyen, Thuong Luo, Wei Venkatesh, Svetha Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University Australia
Motion and location activities are essential to understanding human dynamics. This paper presents a method for discovering significant locations and individuals' daily routines from WiFi data, a data source consid... 详细信息
来源: 评论
Stable clinical prediction using graph support vector machines  23
Stable clinical prediction using graph support vector machin...
收藏 引用
23rd International Conference on pattern recognition, ICPR 2016
作者: Kamkar, Iman Gupta, Sunil Li, Cheng Phung, Dinh Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Australia
The stability matters in clinical prediction models because it makes the model to be interpretable and generalizable. It is paramount for high dimensional data, which employ sparse models with feature selection abilit... 详细信息
来源: 评论
Nonparametric discovery of online mental health-related communities
Nonparametric discovery of online mental health-related comm...
收藏 引用
IEEE International Conference on data Science and Advanced analytics, DSAA 2015
作者: Dao, Bo Nguyen, Thin Venkatesh, Svetha Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University Australia
People are increasingly using social media, especially online communities, to discuss mental health issues and seek supports. Understanding topics, interaction, sentiment and clustering structures of these communities... 详细信息
来源: 评论
A nonparametric Bayesian Poisson gamma model for count data
A nonparametric Bayesian Poisson gamma model for count data
收藏 引用
21st International Conference on pattern recognition, ICPR 2012
作者: Gupta, Sunil Kumar Phung, Dinh Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Australia
We propose a nonparametric Bayesian, linear Poisson gamma model for count data and use it for dictionary learning. A key property of this model is that it captures the parts-based representation similar to nonnegative... 详细信息
来源: 评论
Extraction of latent patterns and contexts from social honest signals using hierarchical Dirichlet processes
Extraction of latent patterns and contexts from social hones...
收藏 引用
11th IEEE International Conference on Pervasive Computing and Communications, PerCom 2013
作者: Nguyen, Thuong Phung, Dinh Gupta, Sunil Venkatesh, S. Centre for Pattern Recognition and Data Analytics Deakin University Australia
A fundamental task in pervasive computing is reliable acquisition of contexts from sensor data. This is crucial to the operation of smart pervasive systems and services so that they might behave efficiently and approp... 详细信息
来源: 评论
Exploiting feature relationships towards stable feature selection
Exploiting feature relationships towards stable feature sele...
收藏 引用
IEEE International Conference on data Science and Advanced analytics, DSAA 2015
作者: Kamkar, Iman Gupta, Sunil Kumar Phung, Dinh Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Australia
Feature selection is an important step in building predictive models for most real-world problems. One of the popular methods in feature selection is Lasso. However, it shows instability in selecting features when dea... 详细信息
来源: 评论