咨询与建议

限定检索结果

文献类型

  • 74 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 41 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 16 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 机械工程
    • 9 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 3 篇 电气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
    • 1 篇 化学工程与技术
  • 32 篇 理学
    • 22 篇 数学
    • 14 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 3 篇 系统科学
    • 1 篇 化学
  • 17 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 艺术学

主题

  • 12 篇 data models
  • 8 篇 feature extracti...
  • 7 篇 computational mo...
  • 7 篇 bayes methods
  • 6 篇 ubiquitous compu...
  • 5 篇 autism
  • 4 篇 bluetooth
  • 4 篇 optimization
  • 4 篇 media
  • 4 篇 blogs
  • 4 篇 entropy
  • 4 篇 diseases
  • 3 篇 indexes
  • 3 篇 hidden markov mo...
  • 3 篇 cameras
  • 3 篇 pragmatics
  • 3 篇 data mining
  • 3 篇 monitoring
  • 3 篇 electrocardiogra...
  • 3 篇 predictive model...

机构

  • 36 篇 centre for patte...
  • 21 篇 centre for patte...
  • 5 篇 centre for patte...
  • 3 篇 institute for fr...
  • 3 篇 department of el...
  • 3 篇 centre for patte...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 centre of patter...
  • 2 篇 national ict aus...
  • 2 篇 deakin universit...
  • 2 篇 centre of patter...
  • 2 篇 computer science...
  • 2 篇 computer science...
  • 1 篇 pattern recognit...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 centre of patter...

作者

  • 32 篇 venkatesh svetha
  • 26 篇 phung dinh
  • 26 篇 svetha venkatesh
  • 24 篇 dinh phung
  • 10 篇 gupta sunil
  • 10 篇 sunil gupta
  • 9 篇 tran truyen
  • 9 篇 rana santu
  • 8 篇 santu rana
  • 7 篇 nguyen tu dinh
  • 6 篇 le trung
  • 6 篇 vu nguyen
  • 6 篇 nguyen thuong
  • 5 篇 ognjen arandjelo...
  • 5 篇 thuong nguyen
  • 5 篇 nguyen thin
  • 4 篇 nguyen vu
  • 4 篇 chandan karmakar
  • 4 篇 bo dao
  • 4 篇 luo wei

语言

  • 92 篇 英文
检索条件"机构=Centre for Pattern Recognition and Data Analytics"
92 条 记 录,以下是51-60 订阅
排序:
Continuous discovery of co-location contexts from Bluetooth data
Continuous discovery of co-location contexts from Bluetooth ...
收藏 引用
作者: Nguyen, Thuong Gupta, Sunil Venkatesh, Svetha Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University Australia
The discovery of contexts is important for context-aware applications in pervasive computing. This is a challenging problem because of the stream nature of data, the complexity and changing nature of contexts. We prop... 详细信息
来源: 评论
An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal
An EEMD-PCA approach to extract heart rate, respiratory rate...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Mohammod Abdul Motin Chandan Kumar Karmakar Marimuthu Palaniswami Department of Electrical & Electronic Engineering University of Melbourne Melbourne Australia Centre of Pattern Recognition and Data Analytics (PRaDA) Deakin University Geelong Australia
The pulse oximeter's photoplethysmographic (PPG) signals, measure the local variations of blood volume in tissues, reflecting the peripheral pulse modulated by cardiac activity, respiration and other physiological... 详细信息
来源: 评论
Bayesian nonparametric Multiple Instance Regression
Bayesian nonparametric Multiple Instance Regression
收藏 引用
International Conference on pattern recognition
作者: Saravanan Subramanian Santu Rana Sunil Gupta P. Bagavathi Sivakumar C. Shunmuga Velayutham Svetha Venkateshc Centre for Pattern Recognition and Data Analytics Deakin University Australia Dept of Computer Science and Engineering Amrita University Coimbatore India Deakin University Burwood VIC AU
Multiple Instance Regression jointly models a set of instances and its corresponding real-valued output. We present a novel multiple instance regression model that infers a subset of instances in each bag that best de... 详细信息
来源: 评论
Multi-task transfer learning for in-hospital-death prediction of ICU patients
Multi-task transfer learning for in-hospital-death predictio...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Chandan Karmakar Budhaditya Saha Marimuthu Palaniswami Svetha Venkatesh Centre of Pattern Recognition and Data Analytics (PRaDA) Deakin University Gee-long VIC Australia Department of Electrical & Electronic Engineering The University of Melbourne Melbourne VIC Australia
Multi-Task Transfer Learning (MTTL) is an efficient approach for learning from inter-related tasks with small sample size and imbalanced class distribution. Since the intensive care unit (ICU) data set (publicly avail... 详细信息
来源: 评论
Analysing the History of Autism Spectrum Disorder Using Topic Models
Analysing the History of Autism Spectrum Disorder Using Topi...
收藏 引用
International Conference on data Science and Advanced analytics (DSAA)
作者: Adham Beykikhoshk Dinh Phung Ognjen Arandjelović Svetha Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia School of Computer Science University of St Andrews Fife Scotland United Kingdom University of Saint Andrews Saint Andrews Fife GB
We describe a novel framework for the discovery of underlying topics of a longitudinal collection of scholarly data, and the tracking of their lifetime and popularity over time. Unlike the social media or news data wh... 详细信息
来源: 评论
Influence of embedding dimension on distribution entropy in analyzing heart rate variability
Influence of embedding dimension on distribution entropy in ...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Radhagayathri K. Udhayakumar Chandan Karmakar Peng Li Marimuthu Palaniswami Department of Electrical & Electronic Engineering The University of Melbourne Melbourne VIC Australia Centre of Pattern Recognition and Data Analytics (PRaDA) Deakin University Geelong VIC Australia The School of Control Science and Engineering Shandong University Jinan China
Distribution entropy (DistEn) is a recent measure of complexity that is used to analyze Heart Rate Variability (HRV) data. DistEn which is a function of data length N, number of bins M and embedding dimension m is kno... 详细信息
来源: 评论
Differentiating sub-groups of online depression-related communities using textual cues  1
收藏 引用
16th International Conference on Web Information Systems Engineering, WISE 2015
作者: Nguyen, Thin O’Dea, Bridianne Larsen, Mark Phung, Dinh Venkatesh, Svetha Christensen, Helen Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia Black Dog Institute University of New South Wales Sydney Australia
Depression is a highly prevalent mental illness and is a comorbidity of other mental and behavioural disorders. The Internet allows individuals who are depressed or caring for those who are depressed, to connect with ... 详细信息
来源: 评论
Topic Model Kernel Classification With Probabilistically Reduced Features
收藏 引用
Journal of data Science 2015年 第2期13卷 323-340页
作者: Vu Nguyen tvnguye@deakin.edu.au Dinh Phung Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics (PRaDA) Deakin University Melbourne Australia
Probabilistic topic models have become a standard in modern machine learning to deal with a wide range of applications. Representing data by dimensional reduction of mixture proportion extracted from topic models is n... 详细信息
来源: 评论
Nonparametric discovery of online mental health-related communities
Nonparametric discovery of online mental health-related comm...
收藏 引用
International Conference on data Science and Advanced analytics (DSAA)
作者: Bo Dao Thin Nguyen Svetha Venkatesh Dinh Phung Centre for Pattern Recognition and Data Analytics Deakin University Australia
People are increasingly using social media, especially online communities, to discuss mental health issues and seek supports. Understanding topics, interaction, sentiment and clustering structures of these communities... 详细信息
来源: 评论
Differentially Private Random Forest with High Utility
Differentially Private Random Forest with High Utility
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Santu Rana Sunil Kumar Gupta Svetha Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University Australia
Privacy-preserving data mining has become an active focus of the research community in the domains where data are sensitive and personal in nature. For example, highly sensitive digital repositories of medical or fina... 详细信息
来源: 评论