咨询与建议

限定检索结果

文献类型

  • 118 篇 会议
  • 23 篇 期刊文献

馆藏范围

  • 141 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 105 篇 工学
    • 72 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 20 篇 生物医学工程(可授...
    • 18 篇 信息与通信工程
    • 18 篇 生物工程
    • 13 篇 机械工程
    • 9 篇 控制科学与工程
    • 8 篇 安全科学与工程
    • 6 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
  • 56 篇 理学
    • 42 篇 数学
    • 19 篇 统计学(可授理学、...
    • 16 篇 生物学
    • 7 篇 系统科学
    • 5 篇 物理学
    • 2 篇 化学
  • 34 篇 管理学
    • 23 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 艺术学

主题

  • 15 篇 data models
  • 9 篇 bayes methods
  • 8 篇 computational mo...
  • 8 篇 feature extracti...
  • 6 篇 predictive model...
  • 6 篇 blogs
  • 6 篇 autism
  • 6 篇 diseases
  • 6 篇 ubiquitous compu...
  • 5 篇 hospitals
  • 5 篇 media
  • 5 篇 entropy
  • 4 篇 support vector m...
  • 4 篇 indexes
  • 4 篇 bluetooth
  • 4 篇 optimization
  • 4 篇 data mining
  • 4 篇 face
  • 4 篇 machine learning
  • 4 篇 context

机构

  • 36 篇 centre for patte...
  • 21 篇 centre for patte...
  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 5 篇 centre for patte...
  • 4 篇 pattern recognit...
  • 4 篇 department of el...
  • 4 篇 institute for mu...
  • 3 篇 pattern recognit...
  • 3 篇 institute for fr...
  • 3 篇 department of co...
  • 3 篇 national key lab...
  • 2 篇 department of el...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 monash universit...
  • 2 篇 centre of patter...
  • 2 篇 pattern recognit...
  • 2 篇 national ict aus...

作者

  • 57 篇 venkatesh svetha
  • 53 篇 phung dinh
  • 34 篇 svetha venkatesh
  • 31 篇 dinh phung
  • 20 篇 nguyen tu dinh
  • 20 篇 tran truyen
  • 20 篇 rana santu
  • 16 篇 gupta sunil
  • 12 篇 le trung
  • 11 篇 nguyen vu
  • 11 篇 sunil gupta
  • 9 篇 santu rana
  • 8 篇 luo wei
  • 7 篇 vu nguyen
  • 6 篇 vu hung
  • 6 篇 nguyen thuong
  • 6 篇 nguyen thin
  • 5 篇 li cheng
  • 5 篇 chandan karmakar
  • 5 篇 tu dinh nguyen

语言

  • 141 篇 英文
检索条件"机构=Centre for Pattern Recognition and Data Analytics Deakin University"
141 条 记 录,以下是11-20 订阅
排序:
Trans2Vec: Learning transaction embedding via items and frequent itemsets  22nd
Trans2Vec: Learning transaction embedding via items and freq...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Dang Nguyen, Tu Dinh Luo, Wei Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Learning meaningful and effective representations for transaction data is a crucial prerequisite for transaction classification and clustering tasks. Traditional methods which use frequent itemsets (FIs) as features o... 详细信息
来源: 评论
Geometric enclosing networks  27
Geometric enclosing networks
收藏 引用
27th International Joint Conference on Artificial Intelligence, IJCAI 2018
作者: Le, Trung Vu, Hung Nguyen, Tu Dinh Phung, Dinh Faculty of Information Technology Monash University Australia Center for Pattern Recognition and Data Analytics Deakin University Australia
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this prob... 详细信息
来源: 评论
Batch Normalized Deep Boltzmann Machines  10
Batch Normalized Deep Boltzmann Machines
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Training Deep Boltzmann Machines (DBMs) is a challenging task in deep generative model studies. The careless training usually leads to a divergence or a useless model. We discover that this phenomenon is due to the ch... 详细信息
来源: 评论
Expected Hypervolume Improvement with Constraints
Expected Hypervolume Improvement with Constraints
收藏 引用
International Conference on pattern recognition
作者: Majid Abdolshah Alistair Shilton Santu Rana Sunil Gupta Svetha Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University Australia
Bayesian optimisation has become a powerful framework for global optimisation of black-box functions that are expensive to evaluate and possibly noisy. In addition to expensive evaluation of objective functions, many ... 详细信息
来源: 评论
Latent sentiment topic modelling and nonparametric discovery of online mental health-related communities
收藏 引用
International Journal of data Science and analytics 2017年 第3期4卷 209-231页
作者: Dao, Bo Nguyen, Thin Venkatesh, Svetha Phung, Dinh Centre for Pattern Recognition and Data Analytics Deakin University GeelongVIC3216 Australia
Social media are an online means of interaction among individuals. People are increasingly using social media, especially online communities, to discuss health concerns and seek support. Understanding topics, sentimen... 详细信息
来源: 评论
Algorithmic assurance: an active approach to algorithmic testing using Bayesian optimisation  18
Algorithmic assurance: an active approach to algorithmic tes...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Shivapratap Gopakumar Sunil Gupta Santu Rana Vu Nguyen Svetha Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
We introduce algorithmic assurance, the problem of testing whether machine learning algorithms are conforming to their intended design goal. We address this problem by proposing an efficient framework for algorithmic ...
来源: 评论
Graph memory networks for molecular activity prediction
arXiv
收藏 引用
arXiv 2018年
作者: Pham, Trang Tran, Truyen Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Geelong Australia
Molecular activity prediction is critical in drug design. Machine learning techniques such as kernel methods and random forests have been successful for this task. These models require fixed-size feature vectors as in... 详细信息
来源: 评论
Nonparametric online machine learning with kernels  26
Nonparametric online machine learning with kernels
收藏 引用
26th International Joint Conference on Artificial Intelligence, IJCAI 2017
作者: Nguyen, Khanh Centre for Pattern Recognition and Data Analytics Deakin University Australia
Max-margin and kernel methods are dominant approaches to solve many tasks in machine learning. However, the paramount question is how to solve model selection problem in these methods. It becomes urgent in online lear... 详细信息
来源: 评论
A Kalman filtering induced heuristic optimization based partitional data clustering
arXiv
收藏 引用
arXiv 2019年
作者: Pakrashi, Arjun Chaudhuri, Bidyut B. Insight Centre for Data Analytics University College Dublin Ireland Computer Vision & Pattern Recognition Unit Indian Statistical Institute 203 B.T. Road Kolkata700108 India
Clustering algorithms have regained momentum with recent popularity of data mining and knowledge discovery approaches. To obtain good clustering in reasonable amount of time, various meta-heuristic approaches and thei... 详细信息
来源: 评论
Dual discriminator generative adversarial nets  31
Dual discriminator generative adversarial nets
收藏 引用
31st Annual Conference on Neural Information Processing Systems, NIPS 2017
作者: Nguyen, Tu Dinh Le, Trung Vu, Hung Phung, Dinh Deakin University Centre for Pattern Recognition and Data Analytics Geelong Australia
We propose in this paper a novel approach to tackle the problem of mode collapse encountered in generative adversarial network (GAN). Our idea is intuitive but proven to be very effective, especially in addressing som... 详细信息
来源: 评论