咨询与建议

限定检索结果

文献类型

  • 246 篇 期刊文献
  • 205 篇 会议

馆藏范围

  • 451 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 276 篇 工学
    • 110 篇 化学工程与技术
    • 79 篇 控制科学与工程
    • 72 篇 计算机科学与技术...
    • 70 篇 软件工程
    • 52 篇 动力工程及工程热...
    • 42 篇 环境科学与工程(可...
    • 37 篇 材料科学与工程(可...
    • 32 篇 机械工程
    • 29 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 16 篇 光学工程
    • 15 篇 冶金工程
    • 15 篇 土木工程
    • 14 篇 食品科学与工程(可...
    • 13 篇 力学(可授工学、理...
    • 13 篇 石油与天然气工程
    • 12 篇 生物工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 9 篇 建筑学
  • 209 篇 理学
    • 93 篇 数学
    • 84 篇 化学
    • 46 篇 物理学
    • 37 篇 统计学(可授理学、...
    • 33 篇 系统科学
    • 23 篇 生物学
    • 11 篇 大气科学
  • 41 篇 管理学
    • 34 篇 管理科学与工程(可...
  • 17 篇 医学
    • 12 篇 基础医学(可授医学...
  • 11 篇 农学
    • 9 篇 作物学
  • 7 篇 经济学
  • 2 篇 法学
  • 2 篇 教育学

主题

  • 29 篇 process control
  • 18 篇 neural networks
  • 17 篇 fault detection
  • 15 篇 chemical analysi...
  • 14 篇 chemical technol...
  • 14 篇 parameter estima...
  • 12 篇 optimization
  • 11 篇 predictive model...
  • 11 篇 inductors
  • 10 篇 process monitori...
  • 10 篇 optimal control
  • 10 篇 artificial neura...
  • 10 篇 mathematical mod...
  • 9 篇 chemical process...
  • 8 篇 manufacturing pr...
  • 8 篇 robust control
  • 7 篇 predictive contr...
  • 7 篇 nonlinear system...
  • 7 篇 robustness
  • 6 篇 fault diagnosis

机构

  • 23 篇 institute of pro...
  • 15 篇 centre for proce...
  • 10 篇 department of ch...
  • 9 篇 national tsing h...
  • 9 篇 key laboratory o...
  • 9 篇 shanghai institu...
  • 8 篇 centre for proce...
  • 6 篇 state environmen...
  • 6 篇 centre for proce...
  • 6 篇 state environmen...
  • 6 篇 northeastern uni...
  • 6 篇 department of ch...
  • 6 篇 centre for proce...
  • 5 篇 state key labora...
  • 5 篇 key laboratory o...
  • 4 篇 chemical process...
  • 4 篇 department of au...
  • 4 篇 automation engin...
  • 4 篇 zhejiang univers...
  • 4 篇 timiryazev insti...

作者

  • 25 篇 liu yi
  • 24 篇 yao yuan
  • 19 篇 jie zhang
  • 14 篇 morris julian
  • 13 篇 julian morris
  • 10 篇 jan van impe
  • 10 篇 liu kaixin
  • 8 篇 simira papadopou...
  • 8 篇 akkermans simen
  • 7 篇 martin elaine
  • 7 篇 elaine martin
  • 7 篇 yang tao
  • 6 篇 martin e.b.
  • 6 篇 jia mingwei
  • 6 篇 raf dewil
  • 6 篇 du wenli
  • 6 篇 a.j. morris
  • 6 篇 eva van derlinde...
  • 6 篇 panos seferlis
  • 6 篇 morris a.j.

语言

  • 429 篇 英文
  • 16 篇 其他
  • 5 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Centre for Process Analytics and Control Technology Department of Chemical & Process Engineering"
451 条 记 录,以下是21-30 订阅
排序:
A Semisupervised Soft-Sensor of Just-in-Time Learning With Structure Entropy Clustering and Applications for Industrial processes Monitoring
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2023年 第4期4卷 722-733页
作者: Li, Dong Liu, Yiqi Huang, Daoping Xu, Chong South China University of Technology Key Laboratory of Autonomous Systems and Networked Control Ministry of Education School of Automation Science and Engineering Guangzhou510640 China Technical University of Denmark Process and Systems Engineering Center Department of Chemical and Biochemical Engineering Lyngby2800 Denmark South China University of Technology School of Automation Science and Engineering Guangzhou510640 China Gannan Normal University School of Physics and Electronic Information Ganzhou341000 China
To monitor industrial processes properly, soft-sensors are widely used to predict significant but difficult-to-measure quality variables. However, the prediction performances of traditional data-driven soft-sensors ar... 详细信息
来源: 评论
Higher N_(2)O production in sequencing batch reactors compared to continuous stirred tank reactors:effect of feast-famine cycles
收藏 引用
Frontiers of Environmental Science & engineering 2023年 第4期17卷 143-154页
作者: Xinjie Yan Xunyu Shen Jipeng Wang Jinlong Zhuang Yu Wang Jinchi Yao Hong Liu Yongdi Liu James P.Shapleigh Wei Li National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery East China University of Science and TechnologyShanghai 200237China State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process School of Resources and Environmental EngineeringEast China University of Science and TechnologyShanghai 200237China School of Environmental and Safety Engineering Changzhou UniversityChangzhou 213164China Shanghai Huayi Group Co.Ltd. Shanghai 201108China Shanghai Institute of Pollution Control and Ecological Security Shanghai 200237China Department of Microbiology Cornell UniversityIthacaNY 14850USA
Nitrous oxide(N_(2)O)is a potent greenhouse gas that can be emitted during the biological treatment of *** this study,a comparison of the long-term performance characteristics and N_(2)O production of sequencing batch... 详细信息
来源: 评论
On the use of Physics in Machine Learning for Manufacturing process Inspection  6
On the use of Physics in Machine Learning for Manufacturing ...
收藏 引用
Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI 2023
作者: Barbastathis, George Zhang, Qihang Pandit, Ajinkya Tang, Wenlong Papageorgiou, Charles Braatz, Richard D. Myerson, Allan S. Tan, Bingyao Schmetterer, Leopold Department of Mechanical Engineering Denmark Department of Chemical Engineering Massachusetts Institute of Technology United States Singapore-MIT Alliance for Research & Technology Centre Massachusetts Institute of Technology United States Data Sciences Institute United States Process Chemistry Development Takeda Pharmaceuticals International Company United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore
We discuss the use of machine learning in computational imaging for manufacturing process inspection and control. In a recent article1 we described a physics-enhanced auto-correlation based estimator (Peace) for quant... 详细信息
来源: 评论
Physics-guided graph learning soft sensor for chemical processes
收藏 引用
Chemometrics and Intelligent Laboratory Systems 2024年 249卷
作者: Liu, Yi Jia, Mingwei Xu, Danya Yang, Tao Yao, Yuan Institute of Process Equipment and Control Engineering Zhejiang University of Technology Hangzhou310023 China State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Department of Chemical Engineering National Tsing Hua University Hsinchu300044 Taiwan
The surge in data-driven soft sensors for industrial processes is evident. However, most of them suffer from the limitation of being black-box models and this will hamper their widespread use. In response to this chal... 详细信息
来源: 评论
Identification of Time-Delayed Second-Order Unstable Systems with Two Rhp Poles and No Zeros
SSRN
收藏 引用
SSRN 2023年
作者: Suhailam, P. Yerolla, Raju Besta, Chandra Shekar Process Control Group Chemical Engineering Department National Institute of Technology Calicut Kerala Kozhikode673601 India
New methods for identifying the model parameters of a pure unstable second-order system with time delay (two right-hand side poles without zero) using the closed-loop response are presented in this article. Identifica... 详细信息
来源: 评论
GPP estimation of a grassland ecosystem based on photosynthesis-hydrology coordination optimization
GPP estimation of a grassland ecosystem based on photosynthe...
收藏 引用
2024 China Automation Congress, CAC 2024
作者: Fu, Lijiang Tan, Jinglu Jiang, Yongnian Allakhverdiev, Suleyman I. Xu, Zhenyu Guo, Ya Key Laboratory of Advanced Process Control for Light Industry Ministry of Education Jiangnan University Wuxi China Department of Chemical & Biomedical Engineering University of Missouri ColumbiaMO United States Jiangsu Zhongnong IoT Technology Co. LTD Yixing China Timiryazev Institute of Plant Physiology RAS Moscow Russia Longcom Internet of Things Co. Ltd Hefei China Key Laboratory of Advanced Process Control for Light Industry Ministry of Education Jiangnan University Wuxi China
Accurate estimation of gross primary production (GPP, ecosystem level photosynthesis) is critical for monitoring terrestrial ecosystems. However, most of the current models used for GPP estimation are with many unknow... 详细信息
来源: 评论
A classification AI model to predict choking of vibrating screen based on DEM and machine learning
收藏 引用
Powder technology 2025年 460卷
作者: Arifuzzaman, S.M. Dong, Kejun Zou, Ruiping Yu, Aibing Centre for Infrastructure Engineering School of Engineering Design and Built Environment Western Sydney University NSW2751 Australia ARC Research Hub for Smart Process Design and Control Department of Chemical Engineering Monash University ClaytonVIC3800 Australia
Screening is a complicated process for classifying granular materials according to size. Choking is a vital issue in screening. It may occur when the particle flow along a screen is too slow, but slow particle flow an... 详细信息
来源: 评论
Sustainable Water Use in Industry—Reasons, Challenges, Response of Kazakhstan
收藏 引用
Circular Economy and Sustainability 2023年 第4期3卷 2267-2283页
作者: Radelyuk, Ivan Klemeš, Jiří Jaromír Tussupova, Kamshat Department of Chemistry and Chemical Technologies Toraighyrov University Pavlodar 140000 Kazakhstan Department of Water Resources Engineering Lund University Box 118 Lund 22100 Sweden Sustainable Process Integration Laboratory (SPIL) NETME CENTRE Faculty of Mechanical Engineering Brno University of Technology—VUT Brno Technická Brno 2896/2 616 69 Czech Republic
Industrial development poses significant challenges to water resource management, both in terms of quality and quantity. In response to these challenges, the concept of sustainable water use has been proposed as a mea... 详细信息
来源: 评论
Critical Review of Hydrogen Safety Assessment Tools: Indian Perspective
收藏 引用
Transactions of the Indian National Academy of engineering 2024年 第4期9卷 737-750页
作者: Rajagopal, Chitra Velpandian, Muthuraja Centre of Excellence in Process Safety & Risk management Indian Institute of Technology (IIT) Delhi New Delhi Delhi India Department of Chemical Engineering Indian Institute of Technology (IIT) Delhi New Delhi Delhi India
Hydrogen is widely regarded as a potentially viable solution for mitigating climate change and satisfying the growing need for sustainable energy sources. Its unique characteristics lead to both opportunities and chal...
来源: 评论
Numerical analysis of liquid flow in ironmaking blast furnace (BF) and its impact on BF performance
收藏 引用
Powder technology 2025年 462卷
作者: Liu, Yancong Jiao, Lulu Kuang, Shibo Yu, Aibing ARC Research Hub for Smart Process Design and Control Department of Chemical and Biological Engineering Monash University ClaytonVIC3800 Australia School of Metallurgical and Ecological Engineering University of Science and Technology Beijing Beijing100083 China
Various types of iron ores used in the blast furnace (BF) ironmaking process lead to different properties of the liquid flowing through the coke bed in the lower part, significantly influencing BF performance. This pa... 详细信息
来源: 评论