Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation inf...
详细信息
Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation influences the particle diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) and transmission electron microscopy (TEM) images. When the γ-irradiation dose was increased (from 2 to 50 kGy), the mean particle size was decreased continuously as a result of γ-induced Ag-NPs fragmentation. The antibacterial properties of the Ag-NPs were tested against Methicillinresistant Staphylococcus aureus (MRSA) (Gram-positive) and Pseudomonas aeruginosa (P.a) (Gram-negative) bacteria. This approach reveals that the γ-irradiation-mediated method is a promising simple route for synthesizing highly stable Ag-NPs in aqueous solutions with good antibacterial properties for different applications.
A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution trans...
详细信息
A new modulated structure consisting of periodic (1120) stacking faults (SFs) in the α-Fe2O3 nanowires (NWs) formed by the thermal oxidation of Fe foils is reported, using a combination of high-resolution transmission electron microscopy (HRTEM) observations and HRTEM image simulations. The periodicity of the modulated structure is 1.53 nm, which is ten times (3500) interplanar spacing and can be described by a shift of every ten (3500) planes with 1/2 the interplanar spacing of the (1120) plane. An atomic model for the Fe203 structure is proposed to simulate the modulated structure. HRTEM simulation results confirm that the modulated structure in α-Fe2O3 NWs is caused by SFs.
Three types of silica materials with different morphology, specifically SiO2 hollow microspheres, mesoporous silica, and silica aerogel were tested as potential precursors for synthesis of silicon nano-and meso-struct...
详细信息
Three types of silica materials with different morphology, specifically SiO2 hollow microspheres, mesoporous silica, and silica aerogel were tested as potential precursors for synthesis of silicon nano- and meso-struc...
详细信息
The nature of ordering in dilute dipolar interacting systems dates back to the work of Debye and is one of the most basic, oldest and as-of-yet unsettled problems in magnetism. While spin-glass order is readily observ...
详细信息
The nature of ordering in dilute dipolar interacting systems dates back to the work of Debye and is one of the most basic, oldest and as-of-yet unsettled problems in magnetism. While spin-glass order is readily observed in several RKKY-interacting systems, dipolar spin glasses are the subject of controversy and ongoing scrutiny, e.g., in LiHoxY1−xF4, a rare-earth randomly diluted uniaxial (Ising) dipolar system. In particular, it is unclear if the spin-glass phase in these paradigmatic materials persists in the limit of zero concentration or not. We study an effective model of LiHoxY1−xF4 using large-scale Monte Carlo simulations that combine parallel tempering with a special cluster algorithm tailored to overcome the numerical difficulties that occur at extreme dilutions. We find a paramagnetic to spin-glass phase transition for all Ho+ ion concentrations down to the smallest concentration numerically accessible, 0.1%, and including Ho+ ion concentrations that coincide with those studied experimentally up to 16.7%. Our results suggest that randomly diluted dipolar Ising systems have a spin-glass phase in the limit of vanishing dipole concentration, with a critical temperature vanishing linearly with concentration. The agreement of our results with mean-field theory testifies to the irrelevance of fluctuations in interactions strengths, albeit being strong at small concentrations, to the nature of the low-temperature phase and the functional form of the critical temperature of dilute anisotropic dipolar systems. Deviations from linearity in experimental results at the lowest concentrations are discussed.
Monolayer graphene was deposited on a Si wafer substrate decorated with SiO2 nanoparticles (NPs) and then exposed to aryl radicals that were generated in situ from their diazonium precursors. Using micro-Raman mapping...
详细信息
We show that microseismic events—earthquakes with small magnitudes—can be fruitfully used to gain insight into the properties of the fracture network of large-scale porous media, such as oil, gas, and geothermal res...
详细信息
We show that microseismic events—earthquakes with small magnitudes—can be fruitfully used to gain insight into the properties of the fracture network of large-scale porous media, such as oil, gas, and geothermal reservoirs. As an example, we analyze extensive data for the Geysers geothermal field in northeast California. Injection of cold water into the reservoir to produce steam leads to microseismic events. It is demonstrated that the analysis can also lead to insight into whether the fractures are of tectonic type or induced by injection of cold water. To demonstrate this we estimate, using the catalogue of the microseismic events, the fractal dimension Df of the spatial distribution of hypocenters of the events in three seismic clusters associated with the injection of cold water into the field, as well as the b values in the Gutenberg-Richter frequency-magnitude distribution. The fractal dimensions are all in a narrow range centered around Df≃2.57±0.06, comparable to the measured fractal dimension of fracture sets in the greywacke reservoir rock. For most cases the b values are about b≃1.3±0.1, consistent with the Aki relation, Df=2b. Both Df and b are significantly higher than those commonly observed for regional tectonic seismicity or aftershock sequences for which Df≈2 and b≈1 are typical. Our results do not imply that no tectonic triggering exists in the reservoir, but rather that the overpressure allows the activation of less favorably oriented fractures that produce an increase in both b and Df. The estimate Df≈2 for tectonic seismicity has been interpreted as indicating that most tectonic events occur on the subset of near-vertical faults—because they have lower normal stress—or that they occur on the backbone of the fracture and fault network, the multiply connected part of the network that enables finite shear strain. Our results lend support to the latter. The results that the entire fracture network, and not just its backbone, is active at the Geyser
暂无评论