咨询与建议

限定检索结果

文献类型

  • 1,270 篇 会议
  • 1,107 篇 期刊文献
  • 29 册 图书

馆藏范围

  • 2,406 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,421 篇 工学
    • 786 篇 计算机科学与技术...
    • 570 篇 软件工程
    • 215 篇 信息与通信工程
    • 154 篇 控制科学与工程
    • 153 篇 电子科学与技术(可...
    • 136 篇 仪器科学与技术
    • 131 篇 电气工程
    • 130 篇 生物工程
    • 104 篇 土木工程
    • 94 篇 机械工程
    • 87 篇 光学工程
    • 86 篇 动力工程及工程热...
    • 84 篇 核科学与技术
    • 79 篇 化学工程与技术
    • 77 篇 建筑学
    • 63 篇 材料科学与工程(可...
    • 59 篇 航空宇航科学与技...
    • 59 篇 生物医学工程(可授...
  • 922 篇 理学
    • 390 篇 物理学
    • 334 篇 数学
    • 167 篇 生物学
    • 117 篇 地球物理学
    • 109 篇 统计学(可授理学、...
    • 107 篇 化学
    • 66 篇 系统科学
  • 305 篇 管理学
    • 206 篇 管理科学与工程(可...
    • 103 篇 图书情报与档案管...
    • 98 篇 工商管理
  • 71 篇 医学
    • 58 篇 临床医学
    • 46 篇 基础医学(可授医学...
  • 52 篇 法学
  • 34 篇 经济学
  • 23 篇 农学
  • 21 篇 教育学
  • 6 篇 艺术学
  • 4 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 106 篇 hadron colliders
  • 88 篇 computer archite...
  • 81 篇 computer science
  • 51 篇 hardware
  • 43 篇 computational mo...
  • 39 篇 wireless sensor ...
  • 35 篇 machine learning
  • 31 篇 neutrons
  • 29 篇 application soft...
  • 28 篇 w & z bosons
  • 28 篇 training
  • 27 篇 optimization
  • 27 篇 software
  • 26 篇 deep learning
  • 26 篇 monitoring
  • 25 篇 quality of servi...
  • 24 篇 higgs bosons
  • 23 篇 runtime
  • 23 篇 neural networks
  • 23 篇 testing

机构

  • 152 篇 centro brasileir...
  • 151 篇 national and kap...
  • 150 篇 istanbul technic...
  • 149 篇 universidad iber...
  • 149 篇 university of sp...
  • 149 篇 yerevan physics ...
  • 146 篇 brunel universit...
  • 146 篇 indian institute...
  • 144 篇 academy of scien...
  • 144 篇 charles universi...
  • 142 篇 university of de...
  • 141 篇 rwth aachen univ...
  • 139 篇 università di to...
  • 139 篇 imperial college...
  • 137 篇 infn sezione di ...
  • 137 篇 department of ph...
  • 136 篇 zhejiang univers...
  • 132 篇 université de st...
  • 130 篇 department of ph...
  • 129 篇 indian institute...

作者

  • 147 篇 ardid m.
  • 133 篇 ferrara g.
  • 116 篇 coleiro a.
  • 115 篇 kalekin o.
  • 115 篇 díaz a.f.
  • 111 篇 enzenhöfer a.
  • 110 篇 brunner j.
  • 109 篇 g. tonelli
  • 109 篇 d. barney
  • 109 篇 l. valencia palo...
  • 109 篇 t. liu
  • 109 篇 c. hensel
  • 109 篇 a. garcia-bellid...
  • 109 篇 a. steen
  • 109 篇 n. cartiglia
  • 109 篇 n. colino
  • 109 篇 f. moortgat
  • 109 篇 b. clerbaux
  • 109 篇 celli s.
  • 108 篇 a. babaev

语言

  • 2,293 篇 英文
  • 62 篇 其他
  • 44 篇 中文
  • 4 篇 德文
  • 3 篇 日文
  • 1 篇 法文
检索条件"机构=Chair of Computer Architecture Institute of Computer Science"
2406 条 记 录,以下是141-150 订阅
排序:
Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
arXiv
收藏 引用
arXiv 2024年
作者: Haritz, Pierre Wanke, David Liebig, Thomas Faculty of Computer Science Chair of Artificial Intelligence TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany
Navigating unsignalized intersections in urban environments poses a complex challenge for self-driving vehicles, where issues such as view obstructions, unpredictable pedestrian crossings, and diverse traffic particip... 详细信息
来源: 评论
Towards Real-Time Motion Planning for Industrial Robots in Collaborative Environments
Towards Real-Time Motion Planning for Industrial Robots in C...
收藏 引用
Annual Conference of Industrial Electronics Society
作者: Teham Bhuiyan Benno Kutschank Karim Prüter Huy Flach Linh Kästner Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
In collaborative environments, real-time motion planning is crucial for industrial robots to navigate safely and efficiently. Traditional planning algorithms, such as Rapidly-exploring Random Trees (RRT) or Probabilis...
来源: 评论
Using Petri Nets as an Integrated Constraint Mechanism for Reinforcement Learning Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Sachweh, Timon Haritz, Pierre Liebig, Thomas Faculty of Computer Science Chair of Artificial Intelligence TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The lack of trust in algorithms is usually an issue when using Reinforcement Learning (RL) agents for control in real-world domains such as production plants, autonomous vehicles, or traffic-related infrastructure, pa... 详细信息
来源: 评论
Holistic Deep-Reinforcement-Learning-based Training for Autonomous Navigation in Crowded Environments
Holistic Deep-Reinforcement-Learning-based Training for Auto...
收藏 引用
IEEE/ASME (AIM) International Conference on Advanced Intelligent Mechatronics
作者: Linh Kästner Marvin Meusel Teham Bhuiyan Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
In recent years, Deep Reinforcement Learning emerged as a promising approach for autonomous navigation of robots and has been utilized in various areas of navigation such as obstacle avoidance, motion planning, or dec...
来源: 评论
Deep-Reinforcement-Learning-Based Path Planning for Industrial Robots Using Distance Sensors as Observation
Deep-Reinforcement-Learning-Based Path Planning for Industri...
收藏 引用
IEEE International Conference on Control and Robotics Engineering (ICCRE)
作者: Teham Bhuiyan Linh Kästner Yifan Hu Benno Kutschank Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
Traditionally, collision-free path planning for industrial robots is realized by sampling-based algorithms such as RRT (Rapidly-exploring Random Tree), PRM (Probabilistic Roadmap), etc. Sampling-based algorithms requi...
来源: 评论
Predicting Navigational Performance of Dynamic Obstacle Avoidance Approaches Using Deep Neural Networks
Predicting Navigational Performance of Dynamic Obstacle Avoi...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Linh Kästner Alexander Christian Ricardo Sosa Mello Bo Li Bassel Fatloun Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
Over the past decades, countless autonomous navigation and dynamic obstacle avoidance approaches have been proposed by various research works. However, to bridge the gap between research and industries, these approach...
来源: 评论
HabitatDyn Dataset: Salient Object Detection to Kinematics Estimation
HabitatDyn Dataset: Salient Object Detection to Kinematics E...
收藏 引用
IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR)
作者: Zhengcheng Shen Yi Gao Linh Kästner Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
The advancement of computer vision and machine learning has made datasets crucial for further research and applications. However, the creation and development of indoor mobile robots with advanced recognition capabili...
来源: 评论
Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
Enhancing Safety for Autonomous Agents in Partly Concealed U...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Pierre Haritz David Wanke Thomas Liebig Faculty of Computer Science Chair of Artificial Intelligence TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany
Navigating unsignalized intersections in urban environments poses a complex challenge for self-driving vehicles, where issues such as view obstructions, unpredictable pedestrian crossings, and diverse traffic particip... 详细信息
来源: 评论
Evaluating Optimization Approaches for Deep-Reinforcement-Learning-based Navigation Agents
Evaluating Optimization Approaches for Deep-Reinforcement-Le...
收藏 引用
IEEE Conference on Cybernetics and Intelligent Systems
作者: Linh Kästner Liam Roberts Teham Bhuiyan Jens Lambrecht Chair Industry Grade Networks and Clouds Faculty of Electrical Engineering and Computer Science Berlin Institute of Technology Berlin Germany
In recent years, Deep Reinforcement learning has made remarkable progress in various application areas such as control of robots and vehicles, simulation, and natural language processing. In recent years, various rese...
来源: 评论
Using Petri Nets as an Integrated Constraint Mechanism for Reinforcement Learning Tasks
Using Petri Nets as an Integrated Constraint Mechanism for R...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Timon Sachweh Pierre Haritz Thomas Liebig Faculty of Computer Science Chair of Artificial Intelligence TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The lack of trust in algorithms is usually an issue when using Reinforcement Learning (RL) agents for control in real-world domains such as production plants, autonomous vehicles, or traffic-related infrastructure, pa... 详细信息
来源: 评论