版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
Despite the growing capacity of computer codes, analytical solutions are still of great interest. As a rule, they are based on certain asymptotic approximations. In our work, we use a two-scale asymptotic procedure. Anti-plane shear waves in a layered medium are studied. To clarify the basics of the methodology, we restrict ourselves with a layered membrane. For long-wave case we obtained solutions for periodic and anti-periodic modes. We analyse them in the low- and high-contrast cases. The results obtained can be generalized for complex multiscale heterogeneous media and structures. They are useful for bridging the gap between mathematically rigorous and phenomenological approaches in dynamics of heterogeneous materials. They also can be implicated as benchmarks for numerical modelling.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论