咨询与建议

限定检索结果

文献类型

  • 87 篇 会议
  • 41 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 93 篇 工学
    • 58 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 23 篇 生物医学工程(可授...
    • 21 篇 光学工程
    • 21 篇 信息与通信工程
    • 16 篇 电气工程
    • 16 篇 生物工程
    • 15 篇 控制科学与工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 机械工程
    • 6 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 4 篇 材料科学与工程(可...
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 核科学与技术
  • 52 篇 理学
    • 32 篇 数学
    • 19 篇 物理学
    • 19 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 6 篇 化学
    • 4 篇 系统科学
  • 16 篇 管理学
    • 12 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 10 篇 医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 4 篇 艺术学
    • 4 篇 设计学(可授艺术学...
  • 1 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 15 篇 pattern recognit...
  • 13 篇 image processing
  • 11 篇 computer science
  • 7 篇 image segmentati...
  • 6 篇 image edge detec...
  • 6 篇 laboratories
  • 6 篇 image analysis
  • 6 篇 image reconstruc...
  • 5 篇 support vector m...
  • 5 篇 visualization
  • 5 篇 feature extracti...
  • 5 篇 machine learning
  • 5 篇 computer vision
  • 5 篇 robustness
  • 4 篇 blood vessels
  • 4 篇 biomedical imagi...
  • 4 篇 image recognitio...
  • 4 篇 shape
  • 3 篇 three-dimensiona...
  • 3 篇 computerized tom...

机构

  • 10 篇 institute of ima...
  • 10 篇 institute of ima...
  • 6 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 4 篇 institute of ima...
  • 4 篇 department of au...
  • 3 篇 school of comput...
  • 3 篇 institute for pa...
  • 3 篇 shanghai jiao to...
  • 3 篇 key laboratory o...
  • 3 篇 image processing...
  • 2 篇 department of co...
  • 2 篇 technical univer...
  • 2 篇 image processing...
  • 2 篇 institute of med...
  • 2 篇 institute of ima...
  • 2 篇 technical univer...
  • 2 篇 computer science...
  • 2 篇 department of co...
  • 2 篇 college of mecha...

作者

  • 10 篇 yang jie
  • 9 篇 yang yang
  • 9 篇 sergiu nedevschi
  • 7 篇 burkhardt hans
  • 5 篇 wang lisheng
  • 5 篇 chen huai
  • 4 篇 wang xiuying
  • 4 篇 hong-bin shen
  • 4 篇 huang qian
  • 3 篇 pengfei shi
  • 3 篇 a.k. jain
  • 3 篇 nedevschi sergiu
  • 3 篇 bischof horst
  • 3 篇 g.c. stockman
  • 3 篇 shen hong-bin
  • 3 篇 zheng zhonglong
  • 3 篇 shi pengfei
  • 3 篇 gong chen
  • 3 篇 leonardis aleš
  • 2 篇 shamsolmoali pou...

语言

  • 126 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Chair of Pattern Recognition and Image Processing Department of Computer Science"
130 条 记 录,以下是31-40 订阅
排序:
Unsupervised Local Discrimination for Medical images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Huai Wang, Renzhen Wang, Xiuying Li, Jieyu Fang, Qu Li, Hui Bai, Jianhao Peng, Qing Meng, Deyu Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an710049 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia Department of Ophthalmology Shanghai Tenth People’s Hospital Tongji University Shanghai200240 China The Cooperative Medianet Innovation Center Shanghai Jiao Tong University Shanghai200240 China The Changchun GeneScience Pharmaceutical Co. LTD China
Contrastive learning, which aims to capture general representation from unlabeled images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. C... 详细信息
来源: 评论
COVID-MTL: Multitask learning with shift3D and random-weighted loss for automated diagnosis and severity assessment of COVID-19
arXiv
收藏 引用
arXiv 2020年
作者: Bao, Guoqing Chen, Huai Liu, Tongliang Gong, Guanzhong Yin, Yong Wang, Lisheng Wang, Xiuying School of Computer Science The University of Sydney J12/1 Cleveland St Darlington SydneyNSW2008 Australia Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Radiation Oncology Shandong Cancer Hospital and Institute Shandong First Medical University Shandong Academy of Medical Sciences Jinan250117 China
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19. Radiology and nucleic acid test (NAT) are complementary COVID-19 diagnosis methods. In this paper, we present an e... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
image synthesis with adversarial networks: A comprehensive survey and case studies
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Granger, Eric Zhou, Huiyu Wang, Ruili Emre Celebi, M. Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Laboratoire d’imagerie De vision et d’intelligence artificielle École de technologie supérieure Montreal Canada School of Informatics University of Leicester United Kingdom School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Computer Science University of Central Arkansas United States
Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a ... 详细信息
来源: 评论
Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Yao, Feng Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China Université de Lyon INSA Lyon CREATIS CNRS INSERM UMR 5220 VilleurbanneU1206 France Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and ba... 详细信息
来源: 评论
NCEM: Network structural similarity metric-based clustering for noisy cryo-EM single particle images
NCEM: Network structural similarity metric-based clustering ...
收藏 引用
Chinese Automation Congress
作者: Yin Shuo Biao Zhang Hong-Bin Shen Yang Yang Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Computer Science Shanghai Jiao Tong University Shanghai China
Cryo-EM single particle image reconstruction is currently a powerful technique for revealing the structure of biomacromolecules. Compared to traditional structural biology techniques like X-Ray, it requires fewer rest... 详细信息
来源: 评论
Author Correction: Microridge-like structures anchor motile cilia
收藏 引用
Nature communications 2024年 第1期15卷 8252页
作者: Takayuki Yasunaga Johannes Wiegel Max D Bergen Martin Helmstädter Daniel Epting Andrea Paolini Özgün Çiçek Gerald Radziwill Christina Engel Thomas Brox Olaf Ronneberger Peter Walentek Maximilian H Ulbrich Gerd Walz Department of Medicine IV University Freiburg Medical Center Faculty of Medicine University of Freiburg Hugstetter Strasse 55 79106 Freiburg Germany. Faculty of Biology University of Freiburg Schaenzlestrasse 1 79104 Freiburg Germany. Pattern Recognition and Image Processing Department of Computer Science University of Freiburg Georges-Köhler-Allee 52 79110 Freiburg Germany. BIOSS Centre for Biological Signalling Studies University of Freiburg Schänzlestrasse 18 79104 Freiburg Germany. CIBSS Centre for Integrative Biological Signalling Studies University of Freiburg Schänzlestrasse 18 79104 Freiburg Germany. Department of Medicine IV University Freiburg Medical Center Faculty of Medicine University of Freiburg Hugstetter Strasse 55 79106 Freiburg Germany. gerd.walz@uniklinik-freiburg.de. BIOSS Centre for Biological Signalling Studies University of Freiburg Schänzlestrasse 18 79104 Freiburg Germany. gerd.walz@uniklinik-freiburg.de. CIBSS Centre for Integrative Biological Signalling Studies University of Freiburg Schänzlestrasse 18 79104 Freiburg Germany. gerd.walz@uniklinik-freiburg.de.
来源: 评论
Correction to: Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
收藏 引用
Journal of translational medicine 2021年 第1期19卷 203页
作者: Yuchen Du Qiuying Chen Ying Fan Jianfeng Zhu Jiangnan He Haidong Zou Dazhen Sun Bowen Xin David Feng Michael Fulham Xiuying Wang Lisheng Wang Xun Xu Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. National Clinical Research Center for Eye Diseases Shanghai 20080 China. Biomedical and Multimedia Information Technology Research Group School of Computer Science The University of Sydney Sydney NSW 2006 Australia. Department of Molecular Imaging Royal Prince Alfred Hospital and the University of Sydney Sydney Australia. Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. lswang@***. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. drxuxun@***. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. drxuxun@***. National Clinical Research Center for Eye Diseases Shanghai 20080 China. drxuxun@***.
An amendment to this paper has been published and can be accessed via the original article.
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
3D RoI-aware U-net for accurate and efficient colorectal tumor segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Yi-Jie Dou, Qi Wang, Zi-Xian Liu, Li-Zhi Jin, Ying Li, Chao-Feng Wang, Lisheng Chen, Hao Xu, Rui-Hua Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University China Imsight Medical Technology Co. Ltd. China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labo... 详细信息
来源: 评论