Accuracy requirements are usually determined as a percentage of the specification range of the measured part or process. Setting accuracy requirements in this manner results in a wide and unpredictable range of false ...
Accuracy requirements are usually determined as a percentage of the specification range of the measured part or process. Setting accuracy requirements in this manner results in a wide and unpredictable range of false rejection and acceptance probabilities. This causes extra costs due to either: 1) over specification of measurement systems accuracy requirements;2) time, effort, retesting, and resolution of false rejections;or 3) system degradation caused by false acceptance of out-of-specification parts. Achieving a consistent and known risk of false acceptance is only possible by considering the measured process C(pk), the process's mean in relation to the center of the specification range, and the measurement system error distribution. This paper presents a method for calculating the probabilities of false rejection and false acceptance for a normal process which is measured with, alternately, uniform and normally distributed error. It is shown that under most conditions uniform error causes 20% to 30% higher false rejection and acceptance probabilities. Thus, knowledge of measurement error distribution could provide lower total production cost.
作者:
F.L. LewisDept. of Electical Engineering
The University of Texas at Arlington U.S.A. F. L. Lewis was born in Wärzburg. Germany
subsequently studyning in Chile and Goruonstoun School in Scotland. He obtained the Bachelor's Degree in Physics/Electrical Engineering and the Master's of Electrical Engineering Degree at Rice University in 1971. He spent six years in the U.S. navy serving as Navigator aboard the frigate USS Trippe (FF-1075) and Executive Officer and Acting Commanding Officer aboard USS Salinan (ATF-161). In 1977 he received the Master's of Science in Aeronautical Engineering from the University of West Florida. In 1981 he obtained the Ph.D. degree at The Georgia Institute of Technology in Atlanta where he was employed as a professor from 1981 to 1990 and is currently an Adjunct Professor. He is a Professor of Electrical Engineering at The University of Texas at Arlington where he was awarded the Moncrief-O'Donnell Endowed Chair in 1990 at the Automation and Robotics Research Institute. Dr. Lewis has studied the geometric analytic and structural properties of dynamical systems and feedback control automation. His current interests include robotics intelligent control neural and fuzzy systes nonlinear systems and manufacturing process control. He is the author/co-author of 2 U.S. patents 124 journal papers 20 chapters and encyclopedia articles 210 refereed conference papers seven books: Optimal Control Optimal Estimation Applied Optimal Control and Estimation Aircraft Control and Simulation Control of Robot Manipulators Neural Network Control High-Level Feedback Control with Neural Networks and the IEEE reprint volume Robot Control. Dr. Lewis is a registered Professional Engineer in the State of Texas and was selected to the Editorial Boards of International Journal of Control Neural Computing and Applications and Int. J. Intelligent Control Systems. He is the recipient of an NSF Research Initiation Grant and has been continuously funded by NSF since 1982. Since 1991 he has received $1.8 m
A framework is given for controller design using Nonlinear Network Structures, which include both neural networks and fuzzy logic systems. These structures possess a universal approximation property that allows them t...
详细信息
A framework is given for controller design using Nonlinear Network Structures, which include both neural networks and fuzzy logic systems. These structures possess a universal approximation property that allows them to be used in feedback control of unknown systems without requirements for linearity in the system parameters or finding a regression matrix. Nonlinear nets can be linear or nonlinear in the tunable weight parameters. In the latter case weight tuning algorithms are not straightforward to obtain. Feedback control topologies and weight tuning algorithms are given here that guarantee closed-loop stability and bounded weights. Extensions are discussed to force control, backstepping control, and output feedback control, where dynamic nonlinear nets are required.
暂无评论