版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
Greenhouse effect is the serious environmental issue whereby the gaseous component involved is dangerous. One of the gases that contributed to atmosphere is carbon dioxide (CO2), in which is more than 80%, followed by methane and nitrous oxide that resulted from human activities, industrial sector and transportation. Activated carbon (AC) is the best adsorption technology due to simple design and ability to capture carbon dioxide efficiently. This paper was aimed to produce activated carbon derived from waste material, to determine adsorption rate at different pressures and temperatures and to relate adsorption kinetics and isotherms equilibrium to describe adsorption processes. Palm Kernel Shell (PKS) was selected as raw material to produce AC. Char was produced via carbonization process at 700 °C ± 20 °C for 2 h with 10 °C/min heating rate under inert gas flow. The sample is then grinded and sieved to 0.65mm to 0.8mm, followed by chemical treatment by using potassium hydroxide with ratio of 1:1 and directly undergoing microwave treatment. Adsorption rate performances were investigated by different temperatures of 25 °C and 10 °C and pressures of 5, 15 and 25 bar. The sample were characterized by thermo-gravimetric analysis, surface area analysis, and ultimate analysis. AC-PKS shows the highest surface area. As a result, increase in pressure led to increase in CO2 adsorption while decrease in temperature in CO2 adsorption. In conclusion, the findings revealed that the potential of AC-PKS to capture CO2 in order to enhance environmental sustainability and economically.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论