咨询与建议

限定检索结果

文献类型

  • 1,218 篇 会议
  • 344 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,563 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,045 篇 工学
    • 441 篇 软件工程
    • 387 篇 计算机科学与技术...
    • 366 篇 控制科学与工程
    • 281 篇 机械工程
    • 159 篇 电气工程
    • 135 篇 电子科学与技术(可...
    • 110 篇 信息与通信工程
    • 95 篇 仪器科学与技术
    • 59 篇 生物工程
    • 49 篇 化学工程与技术
    • 46 篇 动力工程及工程热...
    • 41 篇 光学工程
    • 40 篇 生物医学工程(可授...
    • 38 篇 材料科学与工程(可...
    • 36 篇 冶金工程
    • 36 篇 地质资源与地质工...
    • 30 篇 力学(可授工学、理...
    • 30 篇 石油与天然气工程
    • 29 篇 土木工程
    • 26 篇 交通运输工程
  • 521 篇 理学
    • 277 篇 数学
    • 164 篇 系统科学
    • 122 篇 物理学
    • 67 篇 统计学(可授理学、...
    • 60 篇 生物学
    • 40 篇 化学
    • 27 篇 地球物理学
  • 184 篇 管理学
    • 149 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
  • 26 篇 医学
  • 14 篇 经济学
  • 12 篇 农学
  • 7 篇 法学
  • 6 篇 军事学
  • 3 篇 教育学
  • 3 篇 艺术学

主题

  • 52 篇 feature extracti...
  • 42 篇 training
  • 35 篇 stability analys...
  • 35 篇 optimization
  • 33 篇 neural networks
  • 32 篇 control systems
  • 31 篇 predictive model...
  • 29 篇 accuracy
  • 28 篇 simulation
  • 28 篇 automation
  • 27 篇 mathematical mod...
  • 24 篇 delays
  • 23 篇 deep learning
  • 22 篇 real-time system...
  • 20 篇 support vector m...
  • 20 篇 data models
  • 19 篇 linear matrix in...
  • 19 篇 prediction algor...
  • 19 篇 geology
  • 19 篇 robustness

机构

  • 877 篇 hubei key labora...
  • 810 篇 school of automa...
  • 400 篇 engineering rese...
  • 85 篇 school of automa...
  • 44 篇 ministry of educ...
  • 42 篇 school of engine...
  • 40 篇 china university...
  • 38 篇 hubei key labora...
  • 34 篇 school of automa...
  • 32 篇 china university...
  • 29 篇 school of automa...
  • 27 篇 school of future...
  • 24 篇 school of automa...
  • 24 篇 school of engine...
  • 23 篇 key laboratory o...
  • 22 篇 hubei key labora...
  • 18 篇 school of mechan...
  • 15 篇 key laboratory o...
  • 15 篇 school of automa...
  • 15 篇 school of inform...

作者

  • 159 篇 min wu
  • 83 篇 weihua cao
  • 70 篇 xin chen
  • 68 篇 jinhua she
  • 64 篇 wu min
  • 51 篇 luefeng chen
  • 43 篇 yong he
  • 38 篇 chengda lu
  • 38 篇 cao weihua
  • 37 篇 chuan-ke zhang
  • 33 篇 chen jie
  • 30 篇 xiongbo wan
  • 30 篇 jianqi an
  • 30 篇 jie chen
  • 29 篇 kaifeng dong
  • 28 篇 xuzhi lai
  • 28 篇 fang jin
  • 27 篇 junlei song
  • 27 篇 chao gan
  • 27 篇 wenkai hu

语言

  • 1,476 篇 英文
  • 48 篇 其他
  • 43 篇 中文
检索条件"机构=China Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex System"
1563 条 记 录,以下是1241-1250 订阅
排序:
Communication Atmosphere in Humans and Robots Interaction Based on Fuzzy Analytical Hierarchy Process  36
Communication Atmosphere in Humans and Robots Interaction Ba...
收藏 引用
第36届中国控制会议
作者: Ri Zhang Yong He Zhen-Tao Liu School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
Communication atmosphere in Human-Robot Interaction(HRI) is estimated by integrating emotional states of humans and robots based on the concept of Fuzzy Atmosfleld(FA),where human emotion is estimated from bimodal... 详细信息
来源: 评论
Application of neural network in modeling of activated sludge wastewater treatment process  36
Application of neural network in modeling of activated sludg...
收藏 引用
第36届中国控制会议
作者: Li Jun Zhang Neng Li Jing Jing Zhang Xi Yong Tian School of Automation China University of Geosciences Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
This paper present a prediction model for three different objection(the airflow rate,the carbonaceous biochemical oxygen demand(CBOD) of the effluent,and the total suspend solids(TSS) of the *** model is built by the ... 详细信息
来源: 评论
Experimental Study on Decentralized Concurrent Learning for Multi-Agent system with complex Dynamics  36
Experimental Study on Decentralized Concurrent Learning for ...
收藏 引用
第36届中国控制会议
作者: Ting Fei Xin Chen Min Wu Chi Wang School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
A cooperative multi-agent system entitles some independent agents to complete complex tasks through coordination and *** the dynamics of physical agents are so complex that the environment of learning is indeed stocha... 详细信息
来源: 评论
Global Rice Multi-Class Segmentation Dataset (RiceSEG): A Comprehensive and Diverse High-Resolution RGB-Annotated Images for the Development and Benchmarking of Rice Segmentation Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Junchi Wang, Haozhou Kato, Yoichiro Nampally, Tejasri Rajalakshmi, P. Balram, M. Katsura, Keisuke Lu, Hao Mu, Yue Yang, Wanneng Gao, Yangmingrui Xiao, Feng Chen, Hongtao Chen, Yuhao Li, Wenjuan Wang, Jingwen Yu, Fenghua Zhou, Jian Wang, Wensheng Hu, Xiaochun Yang, Yuanzhu Ding, Yanfeng Guo, Wei Liu, Shouyang Engineering Research Center of Plant Phenotyping Ministry of Education Jiangsu Collaborative Innovation Center for Modern Crop Production Academy for Advanced Interdisciplinary Studies Sanya Institute of Nanjing Agricultural University Nanjing Agricultural University Nanjing China Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan Department of Artificial Intelligence Indian Institute of Technology Hyderabad India Department of Electrical Engineering Indian Institute of Technology Hyderabad India Institute of Biotechnology Professor Jayashankar Telangana Agricultural State University Hyderabad India Graduate School of Agriculture Kyoto University Kyoto Japan Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China National Key Laboratory of Crop Genetic Improvement National Center of Plant Gene Research Hubei Key Laboratory of Agricultural Bioinformatics Huazhong Agricultural University Wuhan China State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China the Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China Center for Geospatial Information Shenzhen Institutes of Advanced Technology Chinese Academy of Science Shenzhen China School of Information and Electrical Engineering Shenyang Agricultural University Shenyang China Rice Research Institute Jilin Academy of Agricultural Sciences Changchun China Institute of Crop Sciences National Key Facility for Crop Gene Resources and Genetic Improvement Chinese Academy of Agricultural Sciences Beijing China Yuan Long Ping High-Tech Agriculture Co. Ltd. Changsha China
Developing computer vision–based rice phenotyping techniques is crucial for precision field management and accelerating breeding, thereby continuously advancing rice production. Among phenotyping tasks, distinguishin... 详细信息
来源: 评论
Image Jacobian Matrix Estimation based on Fuzzy Adaptive Robust Kalman Filter
Image Jacobian Matrix Estimation based on Fuzzy Adaptive Rob...
收藏 引用
Chinese control Conference
作者: Zhenzhu Liu Xinmei Wang Zhenjiang Feng Zhongzhao Xie Shuai Ke Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
Aiming at the problem of image Jacobian matrix estimation, this paper proposes a method to get the motion state estimation of the object feature point at the current time by using the combination of robust Kalman filt... 详细信息
来源: 评论
Unscented Kalman Filter for Nonlinear systems with One-step Randomly Delayed Measurements and Colored Measurement Noises
Unscented Kalman Filter for Nonlinear Systems with One-step ...
收藏 引用
Chinese control Conference (CCC)
作者: Xinmei Wang Zhenzhu Liu Leimin Wang Feng Liu Wei Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
In this paper, a new unscented Kalman filter (Unscented Kalman filter, UKF) for nonlinear system with both one-step randomly delayed measurements and colored measurement noises is proposed. Firstly, the first-order Ma... 详细信息
来源: 评论
Multi-Convolution Neural Networks-Based Deep Learning Model for Emotion Understanding
Multi-Convolution Neural Networks-Based Deep Learning Model ...
收藏 引用
第37届中国控制会议
作者: Luefeng Chen Min Wu Wanjuan Su Kaoru Hirota School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Tokyo Institute of Technology
Multi-convolution neural networks-based deep learning model in combination with multimodal data for emotion understanding is proposed, in which facial expression and body gesture are used to achieve emotional states r... 详细信息
来源: 评论
Convolutional Neural Networks for Facial Expression Recognition with Few Training Samples
Convolutional Neural Networks for Facial Expression Recognit...
收藏 引用
Chinese control Conference
作者: Zhongzhao Xie Yongbo Li Xinmei Wang Wendi Cai Jing Rao Zhenzhu Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
Facial expression recognition (FER) plays an important role in human-machine interaction. An assistant robot having a close interaction with human being should be able to recognize human facial expression. FER is a no... 详细信息
来源: 评论
Synchronous Detector for GMI Magnetic Sensor Based on Lock-in Amplifier
Synchronous Detector for GMI Magnetic Sensor Based on Lock-i...
收藏 引用
Chinese control Conference (CCC)
作者: Jinchao Wang Fang Jin Lei Zhu Zhi Zhao Hengchang Rao Junlei Song Kaifeng Dong M Wenqin Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan P. R. China
A new concept of a synchronous detector for Giant Magneto-Impedance (GMI) sensors is presented. This concept combines a lock-in amplifier, with outstanding capabilities, high speed and a feedback approach that ensures... 详细信息
来源: 评论
A threshold segmentation method for non-uniform illumination image based on brightness equalization
收藏 引用
IOP Conference Series: Materials Science and Engineering 2019年 第5期569卷
作者: Hui Guo Peng Chen Shun Huang Cong Hu Lijun Zhang School of Automation China University of Geosciences Wuhan 430074 China Hubei key laboratory of Advanced Control and Intelligent Automation for Complex System Wuhan 430074 China
In the process of image acquisition, non-uniform illumination images are common due to poor lighting, surface reflection, or a combination of these two factors. In order to improve the quality of image segmentation, a...
来源: 评论