Landslide displacement prediction is an important and indispensable part of landslide monitoring and warning. The change of the displacement is always considered being related to inducing factors, which are aimed at i...
Landslide displacement prediction is an important and indispensable part of landslide monitoring and warning. The change of the displacement is always considered being related to inducing factors, which are aimed at improving accuracy of the predicted model. However, the seasonal characteristic of the displacement, which has not been carefully analyzed, reveals the law of inducing factors. In order to gain a deeper understanding of characteristics, the Baijiabao landslide is taken as an example. The variational mode decomposition (VMD) method, which can extract effective information well, is introduced to decompose the displacement. Introducing the seasonal parameters, the seasonal autoregressive integrated moving average (SARIMA) model is established to predict the displacement subseries. Finally, accumulative displacement prediction values are obtained by superimposing the predicted subseries. With higher accuracy and lower error, the VMD-SARIMA model proves a better option in application compared with VMD-ARIMA, SARIMA and ARIMA models.
This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characte...
This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characterized by the delayed stochastic parabolic partial differential equation is developed for analyzing the effects of stochastic disturbance, structural uncertainty, and discrete delay on the system performance. Then, a non-fragile spatial sampled-data control scheme is established by setting sampling points in the spatial domain, which effectively saves communication resources and ensures that the closed-loop system maintains good performance when the controller is perturbed. Moreover, based on the partial differential equation theory, stochastic analysis approach, and the extended Wirtinger's inequality technique, several criteria are provided to ensure the robust FTS of stochastic parabolic PDE systems in the mean square sense. Lastly, a numerical example is provided to verify the feasibility of the suggested stabilization criteria and control scheme.
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmen...
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmentation landslide identification method based on improved U-Net. The deep convolution neural network and jump connection method is used for end-to-end semantic segmentation to achieve deep feature extraction and fusion of different receptive fields, thus enriching feature information. SENet modules are adopted to enhance the ability of the model to extract important features, so as to further improve the accuracy of model recognition. Extensive experiments show that our improved U-Net achieves better performance than the original algorithm on our landslide datasets. The results of Iou are improved by 4.12% which demonstrates our work is of great significance for the research of landslide area identification. Finally, the model is deployed to the web and applied to the geological hazard intelligent monitoring system to realize the landslide identification task.
In this paper, a novel hybrid model is proposed for online prediction of rate of penetration (ROP) in drilling process, which including two parts (online data pre-processing and online hybrid modeling). In the first p...
In this paper, a novel hybrid model is proposed for online prediction of rate of penetration (ROP) in drilling process, which including two parts (online data pre-processing and online hybrid modeling). In the first part, threshold filtering and Savitzky Golay (SG) filtering are both employed to enhance the quality of drilling data considering the expert experience and data characteristics. In the next part, a novel hybrid model with error compensation is established, which is combined the Bingham sub-model and gradient boosting decision tree (GBDT) sub-model. To better capture the dynamic changes of ROP, the hybrid model is updated with moving window strategy. Finally, compared simulation results with well-known ROP prediction models indicate the efficiency of the hybrid model.
Molten iron is the primary output of blast furnace production. The content of silicon in molten iron clearly correlates with blast furnace temperature. However, due to the intricate conditions of blast furnace product...
详细信息
Molten iron is the primary output of blast furnace production. The content of silicon in molten iron clearly correlates with blast furnace temperature. However, due to the intricate conditions of blast furnace production, the silicon content in molten iron is nonlinear and unstable. Therefore, this paper adopts variational mode decomposition (VMD) to decompose and extract the feature information of the real silicon content data of LY Steel in March 2022, then uses Grey Wolf optimization (GWO) algorithm to optimize the parameters of the support vector regression (SVR) prediction model, and takes the decomposed data as model input for experimental verification. By comparing the predicted results with the real historical data of blast furnace production, it is found that the degree of fit is about 94.2%, which offers a new idea for the prediction of silicon content.
With the bursting of autonomous and assistant driving systems, traffic accident prediction has attracted increasing attention during the past few years. However, predicting traffic accidents is extremely challenging d...
详细信息
Deep learning is currently the mainstream method for ceramic defect detection, and it requires a large number of defect samples to train the network. However, collecting these defect samples is very time-consuming and...
详细信息
Deep learning is currently the mainstream method for ceramic defect detection, and it requires a large number of defect samples to train the network. However, collecting these defect samples is very time-consuming and deep learning suffers from few-shot learning problems. In this study, a StyleGAN3-based data augmentation method for ceramic defect detection was proposed which can generate ceramic defect samples and thus reduce the data collection work. Experiments show that our method uses less training time, has a more stable training process, and can improve the accuracy of the detection network.
This article investigates the asynchronous fault detection (FD) problem for fuzzy systems with event-triggered mechanism (ETM). A new dynamic ETM (DETM) is adopted to further reduce the waste of network resources. Con...
This article investigates the asynchronous fault detection (FD) problem for fuzzy systems with event-triggered mechanism (ETM). A new dynamic ETM (DETM) is adopted to further reduce the waste of network resources. Considering the impact of asynchronous premise variables brought by ETM, a design criterion for fuzzy FD filter (FDF) is derived. A reasonable residual evaluation function is constructed and an appropriate threshold is set. To ensure the error dynamics be asymptotically stable with a prescribed $H_{\infty}$ performance, we construct a new Lyapunov function that contains an internal dynamic variable in the ETM. A sufficient condition satisfying the proposed performance index is derived. Finally, we provide a numerical simulation to verify the effectiveness of the proposed asynchronous FD strategy under dynamic event-triggered (ET) communication.
Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. ...
Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. Most methods use pressure sensors or acoustic sensors to detect pipelines, but there are certain limitations on the usage scenarios and detection time delays. On this basis, this paper selects maglev vibration detector to detect the vibration signal of pipelines. The difficulty lies in that, sudden changes in vibration signals due to external disturbances, may lead to false alarms. Therefore, this paper proposes a pipeline leak detection method using Multivariate Gaussian Distribution based Kullback-Leibler Divergence (MGD-KLD) and on-delay timer to reduce false alarms during the detection process. In this paper, by constructing a simulated pipeline platform for leak experiments and applying the above method to process the experimental data, the false alarm rate of pipeline leak detection can be effectively reduced.
Since landslide is one of the most universal natural disasters in china, the study of regional landslide susceptibility evaluation is important to protect people's lives and property. This paper analyzes the geosp...
Since landslide is one of the most universal natural disasters in china, the study of regional landslide susceptibility evaluation is important to protect people's lives and property. This paper analyzes the geospatial characteristics of the Zigui-Badong section in the Three Gorges. By Pearson correlation analysis methodselects, nine impact factors of landslide susceptibility are extracted from the aspects of topography and geomorphology, geological environment, and hydrological conditions, used to establish the evaluation index system of landslide susceptibility. On the above data basis, the paper applies a support vector machine (SVM) model and an SVM model for gray wolf optimization (GWO) to the susceptibility evaluation of landslides, and product landslide susceptibility index maps according to the results. The research area is divided into four regions by jenks method on the map: high-risk, medium-risk, low-risk, and very low-risk areas. Applying the accuracy, confusion matrix, and receiver operating characteristic (ROC) curve to evaluate the model, The prediction accuracy of the GWO-SVM model and the SVM model is 88.55 % and 82.82 % respectively, the comparison proves that the GWO-SVM model is much more accurate, which can provide a reference for the study of regional landslide susceptibility.
暂无评论