咨询与建议

限定检索结果

文献类型

  • 49 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 62 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 8 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 1 篇 网络空间安全
  • 6 篇 理学
    • 5 篇 物理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 18 篇 artificial neura...
  • 17 篇 laboratories
  • 15 篇 neural networks
  • 8 篇 signal processin...
  • 8 篇 vectors
  • 8 篇 equations
  • 8 篇 circuits
  • 7 篇 circuits and sys...
  • 6 篇 testing
  • 5 篇 neurons
  • 5 篇 blind source sep...
  • 5 篇 signal processin...
  • 5 篇 computer network...
  • 4 篇 signal to noise ...
  • 4 篇 filtering
  • 4 篇 electronic mail
  • 4 篇 analog computers
  • 4 篇 intelligent netw...
  • 4 篇 circuit testing
  • 4 篇 control systems

机构

  • 7 篇 laboratory of ar...
  • 6 篇 circuits systems...
  • 5 篇 cognitive comput...
  • 5 篇 circuits and sys...
  • 4 篇 circuits systems...
  • 4 篇 center of materi...
  • 3 篇 bureau of fronti...
  • 3 篇 circuits systems...
  • 3 篇 michigan state u...
  • 3 篇 circuits systems...
  • 2 篇 circuits systems...
  • 2 篇 school of mathem...
  • 2 篇 department of ps...
  • 2 篇 school of electr...
  • 2 篇 ic tech inc. oke...
  • 2 篇 beijing wave sec...
  • 2 篇 dept. of electr....
  • 2 篇 electronics labo...
  • 1 篇 departments of n...
  • 1 篇 electrical engin...

作者

  • 13 篇 f.m.a. salam
  • 13 篇 f.m. salam
  • 9 篇 k. waheed
  • 6 篇 g. erten
  • 5 篇 hwa-joon oh
  • 4 篇 s.s. vedula
  • 4 篇 linjun sun
  • 4 篇 xin ning
  • 3 篇 a.b. gharbi
  • 3 篇 f.m. salem
  • 3 篇 akandeh atra
  • 3 篇 sun linjun
  • 3 篇 ning xin
  • 3 篇 fathi salem
  • 3 篇 zaid albataineh
  • 3 篇 salem fathi m.
  • 2 篇 waheed khurram
  • 2 篇 wei he
  • 2 篇 a. sachenko
  • 2 篇 zhang liping

语言

  • 60 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Circuits and Systems and Artificial Neural Networks Laboratory"
62 条 记 录,以下是11-20 订阅
排序:
Simplified Long Short-term memory recurrent neural networks: Part II
arXiv
收藏 引用
arXiv 2017年
作者: Akandeh, Atra Salem, Fathi M. Circuits Systems and Neural Networks Laboratory Computer Science and Engineering Electrical Computer Engineering Michigan State University East LansingMI48864-1226
This is part II of three-part work. Here, we present a second set of inter-related five variants of simplified Long Short-term Memory (LSTM) recurrent neural networks by further reducing adaptive parameters. Two of th... 详细信息
来源: 评论
Simplified long short-term memory recurrent neural networks: Part i
arXiv
收藏 引用
arXiv 2017年
作者: Akandeh, Atra Salem, Fathi M. Circuits Systems and Neural Networks Laboratory Computer Science and Engineering Electrical Computer Engineering Michigan State University East LansingMI48864-1226
We present five variants of the standard Long Shortterm Memory (LSTM) recurrent neural networks by uniformly reducing blocks of adaptive parameters in the gating mechanisms. For simplicity, we refer to these models as... 详细信息
来源: 评论
Simplified Long Short-term memory recurrent neural networks: Part III
arXiv
收藏 引用
arXiv 2017年
作者: Akandeh, Atra Salem, Fathi M. Circuits Systems and Neural Networks Laboratory Computer Science and Engineering Electrical Computer Engineering Michigan State University East LansingMI48864-1226
This is part III of three-part work. In parts I and II, we have presented eight variants for simplified Long Short Term Memory (LSTM) recurrent neural networks (RNNs). It is noted that fast computation, specially in c... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Parallel batch pattern training algorithm for deep neural network
Parallel batch pattern training algorithm for deep neural ne...
收藏 引用
International Conference on High Performance Computing & Simulation (HPCS)
作者: Volodymyr Turchenko Vladimir Golovko Research Institute for Intelligent Computer Systems Ternopil National Economic University Ternopil Ukraine Laboratory of Artificial Neural Networks Brest State Technical University Brest Belarus
The development of parallel batch pattern training algorithm for deep multilayered neural network architecture and its parallelization efficiency research on many-core system are presented in this paper. The model of ... 详细信息
来源: 评论
25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
收藏 引用
BMC NEUROSCIENCE 2016年 第1期17卷 1-112页
作者: [Anonymous] Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego USA UNIC CNRS Gif sur Yvette France The European Institute for Theoretical Neuroscience (EITN) Paris France ATR Computational Neuroscience Laboratories Kyoto Japan Krembil Research Institute University Health Network Toronto Canada Department of Physiology University of Toronto Toronto Canada Department of Medicine (Neurology) University of Toronto Toronto Canada Department of Physics University of New Hampshire Durham USA Department of Neurophysiology Nencki Institute of Experimental Biology Warsaw Poland Department of Theory Wigner Research Centre for Physics of the Hungarian Academy of Sciences Budapest Hungary Department of Mathematical Sciences KAIST Daejoen Republic of Korea Department of Mathematics University of Houston Houston USA Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering Rice University Houston USA Department of Biology and Biochemistry University of Houston Houston USA Grupo de Neurocomputación Biológica Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid Madrid Spain Department of Biological Sciences University of Southern California Los Angeles USA Center for Neuroscience Korea Institute of Science and Technology Seoul South Korea Department of Neurology Albert Einstein College of Medicine Bronx USA Center for Neuroscience KIST Seoul South Korea Department of Neuroscience University of Science and Technology Daejon South Korea Systems Neuroscience Group QIMR Berghofer Medical Research Institute Herston Australia Department of Psychology Yonsei University Seoul South Korea Department of Psychiatry Kyung Hee University Hospital at Gangdong Seoul South Korea Department of Psychiatry Veterans Administration Boston Healthcare System and Harvard Medical School Brockton USA Department of Electrical and Electronic Engineering The University of Melbourne Parkvil
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
来源: 评论
New Blind Multiuser Detection in DS-CDMA Using H-DE and ICA Algorithms
New Blind Multiuser Detection in DS-CDMA Using H-DE and ICA ...
收藏 引用
International Conference on Intelligent systems, Modelling and Simulation (ISMS)
作者: Zaid Albataineh Fathi Salem Circuits Systems and Neural Networks Laboratory Department of Electrical and Computer Engineering Michigan State University East Lansing MI USA
Hyper Differential Evolution (H-DE)is a new optimization technique. We develop a novel blind Detection algorithm based on H-DE in conjunction with Independent Component Analysis (ICA). We then apply the algorithm to t... 详细信息
来源: 评论
New Blind Multiuser Detection in DS-CDMA Based on Extension of Efficient Fast Independent Component Analysis (EF-ICA)
New Blind Multiuser Detection in DS-CDMA Based on Extension ...
收藏 引用
International Conference on Intelligent systems, Modelling and Simulation (ISMS)
作者: Zaid Albataineh Fathi Salem Circuits Systems and Neural Networks Laboratory Department of Electrical and Computer Engineering Michigan State University East Lansing MI USA
This Paper develops a novel blind Detection algorithm based on Extension of Efficient FAST Independent Component Analysis (EF-ICA). classifying the received data to many parts in order to use a fit non-quadratic funct... 详细信息
来源: 评论
New Blind Multiuser Detection DS-CDMA Algorithm Using Simplified Fourth Order Cumulant Matrices
New Blind Multiuser Detection DS-CDMA Algorithm Using Simpli...
收藏 引用
IEEE International Symposium on circuits and systems
作者: Zaid Albataineh Fathi Salem Circuits Systems And Neural Networks (CSANN) Laboratory Department of Electrical and Computer Engineering Michigan State University East Lansing Michigan 48824-1226 U.S.A.
A new blind Detection algorithm based on simplified fourth order cumulant matrices is presented and applied to the multi-user symbol estimation problem in Direct Sequence Code Division Multiple Access (DS-CDMA) system... 详细信息
来源: 评论
GridSpice: A Distributed Simulation Platform for the Smart Grid
GridSpice: A Distributed Simulation Platform for the Smart G...
收藏 引用
Workshop on Modeling and Simulation of Cyber-Physical Energy systems
作者: Kyle Anderson Jimmy Du Amit Narayan Abbas El Gamal Circuits Systems and Artificial Neural Networks Laboratory Michigan State University East Lansing MI DLR - German Aerospace Center Institute of Robotics and Mechatronics Wessling Germany
GridSpice is a simulation framework for the smart grid that integrates existing electric power point tools. The framework provides computational scale and modeling capability to represent diverse scenarios in large in... 详细信息
来源: 评论