We review selected results related to the robustness of networked systems in finite and asymptotically large size regimes in static and dynamical settings. In the static setting, within the framework of flow over fini...
We review selected results related to the robustness of networked systems in finite and asymptotically large size regimes in static and dynamical settings. In the static setting, within the framework of flow over finite networks, we discuss the effect of physical constraints on robustness to loss in link capacities. In the dynamical setting, we review several settings in which small-gain-type analysis provides tight robustness guarantees for linear dynamics over finite networks toward worst-case and stochastic disturbances. We discuss network flow dynamic settings where nonlinear techniques facilitate understanding the effect, on robustness, of constraints on capacity and information, substituting information with control action, and cascading failure. We also contrast cascading failure with a representative contagion model. For asymptotically large networks, we discuss the role of network properties in connecting microscopic shocks to emergent macroscopic fluctuations under linear dynamics as well as for economic networks at equilibrium. Through this review, we aim to achieve two objectives: to highlight selected settings in which the role of the interconnectivity structure of a network in its robustness is well understood, and to highlight a few additional settings in which existing system-theoretic tools give tight robustness guarantees and that are also appropriate avenues for future network-theoretic investigations.
We examine observations of turbulence in the geophysical environment, primarily from oceans but also from lakes, in light of theory and experimental studies undertaken in the laboratory and with numerical simulation. ...
We examine observations of turbulence in the geophysical environment, primarily from oceans but also from lakes, in light of theory and experimental studies undertaken in the laboratory and with numerical simulation. Our focus is on turbulence in density-stratified environments and on the irreversible fluxes of tracers that actively contribute to the density field. Our understanding to date has come from focusing on physical problems characterized by high Reynolds number flows with no spatial or temporal variability, and we examine the applicability of these results to the natural or geophysical-scale problems. We conclude that our sampling and interpretation of the results remain a first-order issue, and despite decades of ship-based observations we do not begin to approach a reliable sampling of the overall turbulent structure of the ocean interior.
This review offers a comprehensive overview of current traffic modeling, estimation, and control methods, along with resulting field experiments. It highlights key developments and future directions in leveraging tech...
详细信息
This review offers a comprehensive overview of current traffic modeling, estimation, and control methods, along with resulting field experiments. It highlights key developments and future directions in leveraging technological advancements to improve traffic management and safety. The focus is on macroscopic, microscopic, and micro-macro models, as well as state-of-the-art control techniques and estimation methods for deploying vehicles in traffic field experiments.
作者:
SINGERMAN, HAROLD H.KINNEY, EDWARD T.Mr. H. H. Singerman is Head of the Fluid Processes Branch of the Annapolis Division of the Naval Ship Research and Development Center. A native of Massachusetts
he has been at the Center since 1951. He has a B.S. in Chemical Engineering from Northeastern University and is a degree candidate for Master of Public Administration (Technology of Management) at the American University. His group is responsible for Research and Development in such diverse fields as life support in nuclear submarines analytical chemistry water treatment and control and shipboard sewage systems. He is a member of the American Institute of Chemical Engineers. Mr. E. T. Kinney
a native of Grand Rapids Michigan earned his Bachelor of Science degree with honors in Civil Engineering from Michigan State University in 1952. After a brief stint as an assistant county engineer in Michigan he began his career with the Bureau of Ships as a Naval Architect in the Hull Design Training Program in September 1952. Mr. Kinney is currently a Project Coordinator in the Propulsion Power and Auxiliary Systems Division (SEC 6151) of NAVSEC where he is responsible for auxiliary and landing ships deep submersible vehicles and the NAVSEC Environmental Pollution Control Program. He is a member of the board of directors of the Federal Conference of Sanitary Engineers Panel M-17 of SNAME and Tau Beta Pi Engineering Honor Society.
In a world facing a growing water crisis, conflicts regarding water sharing and environmental issues are expected to grow, especially in transboundary river basins, where 40% of the world's population lives.;This ...
详细信息
ISBN:
(数字)9783642614385
ISBN:
(纸本)9783540607144;9783642648434
In a world facing a growing water crisis, conflicts regarding water sharing and environmental issues are expected to grow, especially in transboundary river basins, where 40% of the world's population lives.;This book represents one of the first attempts to bring together methodologies and analytical tools from socio-economic, international policy, engineering, and water management specialists dealing with transboundary water resources. The book is divided into three parts. Part I introduces state--of-the-art concepts in institutional policy and conflict analysis. Part II presents engineering approaches and models for transboundary water management and conflict resolution. Part III analyzes cases in international river basins and enclosed seas.
This book talks about the dynamics of the surface water-groundwater contaminant interactions under different environmental conditions across the world. The contents of the book highlight trends of monitoring, predicti...
详细信息
ISBN:
(数字)9789811546686
ISBN:
(纸本)9789811546679;9789811546709
This book talks about the dynamics of the surface water-groundwater contaminant interactions under different environmental conditions across the world. The contents of the book highlight trends of monitoring, prediction, awareness, learning, policy, and mitigation success. The book provides a description of the background processes and factors controlling resilience, risk, and response of water systems, contributing to the development of more efficient, sustainable technologies and management options. It integrates methodologies and techniques such as data science and engineering, remote sensing, modelling, analytics, synthesis and indices, disruptive innovations and their utilization in water management, policy making, and mitigation strategies. The book is intended to be a comprehensive reference for students, professionals, and researchers working on various aspects of science and technology development. It will also prove a useful resource for policy makers and implementation specialists.
After two decades, data processing has finally, and probably forever, found its niche among civilengineering and construction (CEC) professionnals, through word processors, digitizing tables, management software, and...
详细信息
ISBN:
(数字)9781468474046
ISBN:
(纸本)9781850912538
After two decades, data processing has finally, and probably forever, found its niche among civilengineering and construction (CEC) professionnals, through word processors, digitizing tables, management software, and increasingly via drawing software and computer-aided design (CAD), recently, robots have even started invading work sites. What are the main trends of CAD and robotics in the field of architecture and civil enginee ring? What type of R&D effort do university and industrial laboratories undertake to devise the professional software that will be on the market in the next three to five years? These are the issues which will be addressed during this symposium. To this effect, we have planned concurrently an equipment and software show, as well as a twofold conference. Robotic is just starting in the field of civilengineering and construction. A pioneer, the civilengineering Departement of Carnegie-Mellon University, in the United States, organized the first two international symposia, in 1984 and 1985 in Pittsburgh. This is the third meeting on the subject (this year, however, we have also included CAD). It constitutes the first large international symposium where CAD experts, specialists in architecture and CEC robotics will meet. From this standpoint, it should be an ideal forum for exchanging views and expe riences on a wide range of topics, and we hope it will give rise to novel applications and new syntheses. This symposium is intented for scientists, teachers, students and also for manufacturers and all CEC professionals.
暂无评论