咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 21 篇 期刊文献

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 25 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 11 篇 理学
    • 7 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 系统科学
  • 11 篇 管理学
    • 8 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 5 篇 cloud computing
  • 4 篇 computational mo...
  • 3 篇 vocabulary
  • 3 篇 machine learning
  • 2 篇 reliability
  • 2 篇 object detection
  • 2 篇 computer archite...
  • 2 篇 neural networks
  • 2 篇 data mining
  • 2 篇 mapreduce
  • 2 篇 benchmark testin...
  • 2 篇 visualization
  • 2 篇 semantics
  • 2 篇 benchmarking
  • 2 篇 surveillance
  • 2 篇 charging station...
  • 2 篇 antennas
  • 2 篇 clustering algor...
  • 2 篇 edge computing
  • 2 篇 training

机构

  • 9 篇 microsoft cloud ...
  • 8 篇 microsoft resear...
  • 8 篇 shanghai key lab...
  • 5 篇 shanghai collabo...
  • 4 篇 shanghai collabo...
  • 3 篇 school of inform...
  • 3 篇 lenovo group
  • 3 篇 school of comput...
  • 3 篇 key lab. of clou...
  • 3 篇 cloud and intell...
  • 2 篇 laboratory of hi...
  • 2 篇 guangxi cooperat...
  • 2 篇 school of inform...
  • 2 篇 school of comput...
  • 2 篇 guangxi colleges...
  • 2 篇 cloud computing ...
  • 2 篇 lab of simulatio...
  • 1 篇 lenovo ltd. beij...
  • 1 篇 independent rese...
  • 1 篇 national formosa...

作者

  • 7 篇 jiang yu-gang
  • 7 篇 wu zuxuan
  • 6 篇 chen dongdong
  • 6 篇 yang yan
  • 6 篇 song dandan
  • 6 篇 yuan lu
  • 5 篇 wang junke
  • 5 篇 wang hongjun
  • 5 篇 luo chong
  • 4 篇 dongdong chen
  • 4 篇 zhiqiang he
  • 4 篇 zuxuan wu
  • 4 篇 lu yuan
  • 4 篇 dai xiyang
  • 4 篇 liao lejian
  • 4 篇 leila ismail
  • 3 篇 chong luo
  • 3 篇 junke wang
  • 3 篇 mahmood amjad
  • 3 篇 yu-gang jiang

语言

  • 46 篇 英文
  • 4 篇 其他
  • 4 篇 中文
检索条件"机构=Cloud and Intelligent Computing Lab"
54 条 记 录,以下是1-10 订阅
排序:
Service decoupling for open and intelligent service-based RAN
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2025年 第2期26卷 230-245页
作者: Chunjing YUAN Tong LEI Ze XUE Lin TIAN Shuyuan ZHANG Na LI Zhou TONG Institute of Computing Technology Chinese Academy of SciencesBeijing 100190China Hubei Intelligent Cloud Network Operation Center China TelecomWuhan 430024China Nanjing Institute of InforSuperBahn Nanjing 210008China Future Research Lab China Mobile Research InstituteBeijing 100053China
Task diversity is one of the biggest challenges for future sixth-generation(6G)*** the task as the center and driving the dynamic 6G radio access network(RAN)with artificial intelligence(AI)are necessary to accurately... 详细信息
来源: 评论
End States Guided Matching Network for Retrieval-based Multi-turn Conversation  3
End States Guided Matching Network for Retrieval-based Multi...
收藏 引用
2021年第三届先进计算机技术、信息科学与通信国际会议(CTISC2021)
作者: Weixin Tan Dandan Song Yujin Gao Lab of High Volume language Information Processing & Cloud Computing Beijing Lab of Intelligent Information TechnologyBeijing Institute of Technology
Multi-turn conversation response selection aims to choose the best response from multiple candidates based on matching it with the dialogue context. Mostly, a response full of context-related information tends to be a... 详细信息
来源: 评论
Caseg: Clip-Based Action Segmentation With Learnable Text Prompt
Caseg: Clip-Based Action Segmentation With Learnable Text Pr...
收藏 引用
IEEE International Conference on Image Processing
作者: Suyuan Huang Haoxin Zhang Yanyu Xu Yan Gao Yao Hu Zengchang Qin Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Xiaohongshu Inc. Institute of High Performance Computing A*Star Guangzhou Zhongsuan Cloud Technology Co.. Ltd.
Video action segmentation aims to identify and localize actions. Existing models have achieved impressive performance with pre-extracted frame-level features, but this may limit zero-shot learning and cross-dataset in... 详细信息
来源: 评论
The chordata olfactory receptor database
收藏 引用
Protein & Cell 2025年 第4期16卷 283-292页
作者: Wei Han Siyu Bao Jintao Liu Yiran Wu Liting Zeng Tao Zhang Ningmeng Chen Kai Yao Shunguo Fan Aiping Huang Yuanyuan Feng Guiquan Zhang Ruiyi Zhang Hongjin Zhu Tian Hua Zhijie Liu Lina Cao Xingxu Huang Suwen Zhao Human Institute ShanghaiTech UniversityShanghai 201210China Research Center for Life Sciences Computing Zhejiang LabHangzhou 311121China Department of Intelligent Edge Cloud China Telecom Cloud Technology Co.Ltd.Shanghai 200120China School of Life Science and Technology ShanghaiTech UniversityShanghai 201210China School of Information Science and Technology Shanghai Tech UniversityShanghai 201210China Shanghai Key Laboratory of High-Resolution Electron Microscopy Shanghai Tech UniversityShanghai 201210China Zhejiang Provincial Key Laboratory of Pancreatic Disease The First Affiliated Hospitaland Institute of Translational MedicineZhejiang University School of MedicineHangzhou 310029China Shanghai Clinical Research and Trial Center Shanghai 201210China
Introduction of database Olfaction is one of the oldest chemosensory systems in chordates,playing crucial roles in their foraging,predator evasion,social communication,mating and parental care(Guo et al.,2023;Li and L... 详细信息
来源: 评论
Why Not Look One Step Ahead in Reinforcement Learning Based Knowledge Graph Reasoning?
SSRN
收藏 引用
SSRN 2024年
作者: Wang, Hao Song, Dandan Wu, Zhijing Tian, YuHang Xu, Jing Laboratory of High-Volume Language Information Processing and Cloud Computing Beijing Lab of Intelligent Information Technology School of Computer Science and Technology Beijing Institute of Technology Beijing100081 China
Multi-hop reasoning is an effective and explainable method for query answering to improve interpretability by finding reasoning paths over knowledge graphs (KGs). Recent studies apply reinforcement learning-based (RL-... 详细信息
来源: 评论
Uncertainty-aware complementary label queries for active learning
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2023年 第10期24卷 1497-1503页
作者: Shengyuan LIU Ke CHEN Tianlei HU Yunqing MAO Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang UniversityHangzhou 310027China State Key Laboratory of Blockchain and Data Security Zhejiang UniversityHangzhou 310027China City Cloud Technology(China)Co. Ltd.Hangzhou 310000China
Many active learning methods assume that a learner can simply ask for the full annotations of some training data from *** methods mainly try to cut the annotation costs by minimizing the number of annotation ***,annot... 详细信息
来源: 评论
Masked Video Distillation: Rethinking Masked Feature Modeling for Self-supervised Video Representation Learning
Masked Video Distillation: Rethinking Masked Feature Modelin...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Rui Wang Dongdong Chen Zuxuan Wu Yinpeng Chen Xiyang Dai Mengchen Liu Lu Yuan Yu–Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Cloud + AI
Benefiting from masked visual modeling, self-supervised video representation learning has achieved remarkable progress. However, existing methods focus on learning representations from scratch through reconstructing l...
来源: 评论
CUDA and Applications to Task-based Programming
CUDA and Applications to Task-based Programming
收藏 引用
43rd Annual Conference on European Association for Computer Graphics, EUROGRAPHICS 2022
作者: Kerbl, Bernhard Kenzel, Michael Winter, Martin Steinberger, Markus TU Wien Institute of Visual Computing and Human-Centered Technology Austria Saarland University Computer Graphics Lab Germany Intelligent Cloud Rendering Laboratory Huawei Technologies Austria Graz University of Technology Institute of Computer Graphics and Vision Austria
Since its inception, the CUDA programming model has been continuously evolving. Because the CUDA toolkit aims to consistently expose cutting-edge capabilities for general-purpose compute jobs to its users, the added f... 详细信息
来源: 评论
OmniViD: A Generative Framework for Universal Video Understanding
OmniViD: A Generative Framework for Universal Video Understa...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junke Wang Dongdong Chen Chong Luo Bo He Lu Yuan Zuxuan Wu Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Cloud + AI Microsoft Research Asia University of Maryland College Park
The core of video understanding tasks, such as recognition, captioning, and tracking, is to automatically de-tect objects or actions in a video and analyze their temporal evolution. Despite sharing a common goal, diff... 详细信息
来源: 评论
Look Before You Match: Instance Understanding Matters in Video Object Segmentation
Look Before You Match: Instance Understanding Matters in Vid...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junke Wang Dongdong Chen Zuxuan Wu Chong Luo Chuanxin Tang Xiyang Dai Yucheng Zhao Yujia Xie Lu Yuan Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Cloud + AI Microsoft Research Asia
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, ...
来源: 评论