咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 17 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 生物工程
    • 3 篇 电气工程
    • 3 篇 化学工程与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
  • 16 篇 理学
    • 8 篇 生物学
    • 5 篇 物理学
    • 3 篇 数学
    • 3 篇 化学
    • 2 篇 统计学(可授理学、...
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 3 篇 教育学
    • 2 篇 心理学(可授教育学...
    • 1 篇 教育学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 3 篇 feature extracti...
  • 2 篇 causality
  • 2 篇 inverse problems
  • 2 篇 intentionality
  • 2 篇 functionality
  • 2 篇 face
  • 2 篇 physics
  • 1 篇 object detection
  • 1 篇 image acquisitio...
  • 1 篇 logistics
  • 1 篇 deep learning
  • 1 篇 generative adver...
  • 1 篇 http
  • 1 篇 motion planning
  • 1 篇 ophthalmology
  • 1 篇 three-dimensiona...
  • 1 篇 data sharing
  • 1 篇 image segmentati...
  • 1 篇 electroencephalo...
  • 1 篇 brain models

机构

  • 4 篇 department of ne...
  • 3 篇 department of ch...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 paris brain inst...
  • 3 篇 department of ra...
  • 3 篇 department of ch...
  • 3 篇 cea drf joliot n...
  • 3 篇 national imaging...
  • 3 篇 center of functi...
  • 3 篇 biomedical engin...
  • 3 篇 bio-imaging lab ...
  • 3 篇 radiology and ra...
  • 3 篇 department of co...
  • 3 篇 department of fo...
  • 3 篇 department of ra...
  • 3 篇 providi lab imag...
  • 3 篇 radiomics group ...
  • 3 篇 fmrib centre wel...
  • 3 篇 usc stevens neur...

作者

  • 5 篇 egger bernhard
  • 3 篇 zhang jiangyang
  • 3 篇 wu dan
  • 3 篇 michielse stijn
  • 3 篇 drobnjak ivana
  • 3 篇 grant samuel c.
  • 3 篇 hertanu andreea
  • 3 篇 shemesh noam
  • 3 篇 farquharson shaw...
  • 3 篇 cohen-adad julie...
  • 3 篇 schilling kurt g...
  • 3 篇 eichner corneliu...
  • 3 篇 dunn jeff f.
  • 3 篇 grussu francesco
  • 3 篇 jelescu ileana o...
  • 3 篇 zimmermann jan
  • 3 篇 miller karla
  • 3 篇 bowman christien
  • 3 篇 barrett rachel l...
  • 3 篇 frydman lucio

语言

  • 29 篇 英文
  • 2 篇 其他
检索条件"机构=Cognitive Computer Vision Lab"
31 条 记 录,以下是1-10 订阅
排序:
exploreCOSMOS Interactive Exploration of Conditional Statistical Shape Models in the Web-Browser
arXiv
收藏 引用
arXiv 2024年
作者: Hahn, Maximilian Egger, Bernhard Cognitive Computer Vision Lab Department of Computer Science Friedrich-Alexander-Universtitat Erlangen-Nürnberg Germany
Statistical Shape Models of faces and various body parts are heavily used in medical image analysis, computer vision and visualization. Whilst the field is well explored with many existing tools, all of them aim at ex... 详细信息
来源: 评论
PoseBias: On Dataset Bias and Task Difficulty - Is there an Optimal Camera Position for Facial Image Analysis?
PoseBias: On Dataset Bias and Task Difficulty - Is there an ...
收藏 引用
International Conference on computer vision Workshops (ICCV Workshops)
作者: Mohit Choithwani Sneha Almeida Bernhard Egger Cognitive Computer Vision Lab (CogCoVi) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Let's imagine you could choose the position of the camera for a particular face analysis task - where would you put it? In this work, we provide a first analysis based on synthetic training data to provide evidenc...
来源: 评论
ReWaRD: Retinal Waves for Pre-Training Artificial Neural Networks Mimicking Real Prenatal Development
arXiv
收藏 引用
arXiv 2023年
作者: Cappell, Benjamin Stoll, Andreas Umah, Williams Chukwudi Egger, Bernhard Cognitive Computer Vision Lab Chair of Visual Computing Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
Computational models trained on a large amount of natural images are the state-of-the-art to study human vision – usually adult vision. Computational models of infant vision and its further development are gaining mo... 详细信息
来源: 评论
RENI++: A Rotation-Equivariant, Scale-Invariant, Natural Illumination Prior
arXiv
收藏 引用
arXiv 2023年
作者: Gardner, James A.D. Egger, Bernhard Smith, William A.P. The Department of Computer Science University of York York United Kingdom The Cognitive Computer Vision Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. ... 详细信息
来源: 评论
Rotation-equivariant conditional spherical neural fields for learning a natural illumination prior  22
Rotation-equivariant conditional spherical neural fields for...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: James A. D. Gardner Bernhard Egger William A. P. Smith Department of Computer Science University of York York United Kingdom Cognitive Computer Vision Lab Friedrich-Alexander-Universität Erlangen Germany
Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. ...
来源: 评论
Rotation-Equivariant Conditional Spherical Neural Fields for Learning a Natural Illumination Prior
arXiv
收藏 引用
arXiv 2022年
作者: Gardner, James A.D. Egger, Bernhard Smith, William A.P. Department of Computer Science University of York York United Kingdom Cognitive Computer Vision Lab Friedrich-Alexander-Universität Erlangen Germany
Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. ... 详细信息
来源: 评论
The Sky’s the Limit: Relightable Outdoor Scenes via a Sky-pixel Constrained Illumination Prior and Outside-In Visibility
arXiv
收藏 引用
arXiv 2023年
作者: Gardner, James A.D. Kashin, Evgenii Egger, Bernhard Smith, William A.P. Department of Computer Science The University of York YorkYO10 5DD United Kingdom Cognitive Computer Vision Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
Inverse rendering of outdoor scenes from unconstrained image collections is a challenging task, particularly illumination/albedo ambiguities and occlusion of the illumination environment (shadowing) caused by geometry... 详细信息
来源: 评论
Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
arXiv
收藏 引用
arXiv 2023年
作者: Müller, Jens Kühmichel, Lars Rohbeck, Martin Radev, Stefan T. Köthe, Ullrich Computer Vision and Learning Lab Heidelberg University Germany Division of Computational Genomics and Systems Genetics DKFZ Germany Department of Cognitive Science Rensselaer Polytechnic Institute NY United States
In this work, we analyze the conditions under which information about the context of an input X can improve the predictions of deep learning models in new domains. Following work in marginal transfer learning in Domai... 详细信息
来源: 评论
Convolutional Cross-View Pose Estimation
arXiv
收藏 引用
arXiv 2023年
作者: Xia, Zimin Booij, Olaf Kooij, Julian F.P. The Intelligent Vehicles Group Department of Cognitive Robotics Delft University of Technology Leeghwaterstraat Delft2628 CN Netherlands The Computer Vision Lab Delft University of Technology Mekelweg 4 Delft2628 CD Netherlands
We propose a novel end-to-end method for cross-view pose estimation. Given a ground-level query image and an aerial image that covers the query’s local neighborhood, the 3 Degrees-of-Freedom camera pose of the query ... 详细信息
来源: 评论
Object Detection, Recognition, Deep Learning, and the Universal Law of Generalization
arXiv
收藏 引用
arXiv 2022年
作者: Rustom, Faris B. Öğmen, Haluk Yazdanbakhsh, Arash Department of Psychological and Brain Sciences Computational Neuroscience and Vision Lab Center for Systems Neuroscience Boston University BostonMA United States Department of Electrical & Computer Engineering Laboratory of Perceptual and Cognitive Dynamics University of Denver DenverCO United States
Object detection and recognition are fundamental functions underlying the success of species. Because the appearance of an object exhibits a large variability, the brain has to group these different stimuli under the ... 详细信息
来源: 评论