咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 318 篇 会议

馆藏范围

  • 777 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 494 篇 工学
    • 359 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 98 篇 生物工程
    • 76 篇 信息与通信工程
    • 69 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 50 篇 电气工程
    • 46 篇 控制科学与工程
    • 35 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 18 篇 机械工程
    • 16 篇 仪器科学与技术
    • 16 篇 安全科学与工程
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 网络空间安全
  • 302 篇 理学
    • 120 篇 生物学
    • 116 篇 数学
    • 92 篇 物理学
    • 42 篇 统计学(可授理学、...
    • 29 篇 化学
    • 18 篇 地球物理学
    • 18 篇 系统科学
  • 115 篇 管理学
    • 61 篇 图书情报与档案管...
    • 59 篇 管理科学与工程(可...
    • 20 篇 工商管理
  • 62 篇 医学
    • 54 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 15 篇 法学
  • 11 篇 农学
  • 9 篇 经济学
  • 7 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 26 篇 deep neural netw...
  • 26 篇 machine learning
  • 23 篇 semantics
  • 21 篇 deep learning
  • 18 篇 training
  • 16 篇 computational mo...
  • 12 篇 memory managemen...
  • 11 篇 task analysis
  • 11 篇 feature extracti...
  • 10 篇 data models
  • 8 篇 scalability
  • 8 篇 generative adver...
  • 8 篇 graph neural net...
  • 8 篇 predictive model...
  • 7 篇 parallel process...
  • 7 篇 magnetic resonan...
  • 7 篇 computer archite...
  • 7 篇 throughput
  • 7 篇 containers
  • 7 篇 efficiency

机构

  • 102 篇 national enginee...
  • 56 篇 school of comput...
  • 51 篇 school of cyber ...
  • 36 篇 national enginee...
  • 31 篇 services computi...
  • 31 篇 hubei engineerin...
  • 28 篇 hubei key labora...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 21 篇 hiroshima astrop...
  • 21 篇 department of ph...
  • 19 篇 school of softwa...
  • 18 篇 university of ch...
  • 17 篇 department of ph...
  • 16 篇 berkeley institu...
  • 16 篇 secure computing...
  • 16 篇 zhejiang lab
  • 15 篇 department of ph...
  • 15 篇 physics division...
  • 15 篇 national energy ...

作者

  • 112 篇 hai jin
  • 109 篇 jin hai
  • 42 篇 xiaofei liao
  • 25 篇 hu shengshan
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 19 篇 liao xiaofei
  • 18 篇 zou deqing
  • 17 篇 zhang leo yu
  • 17 篇 nachman benjamin
  • 16 篇 wu baoyuan
  • 15 篇 bastieri d.
  • 15 篇 green d.
  • 15 篇 orlando e.
  • 15 篇 lubrano p.
  • 15 篇 gargano f.
  • 15 篇 spinelli p.
  • 15 篇 kuss m.
  • 15 篇 mikuni vinicius
  • 15 篇 yu zhang

语言

  • 623 篇 英文
  • 149 篇 其他
  • 8 篇 中文
检索条件"机构=Cognitive Computing and Data Science Research Lab"
777 条 记 录,以下是421-430 订阅
排序:
Under-confidence Backdoors Are Resilient and Stealthy Backdoors
arXiv
收藏 引用
arXiv 2022年
作者: Peng, Minlong Xiong, Zidi Nguyen, Quang H. Sun, Mingming Doan, Khoa D. Li, Ping Cognitive Computing Lab Baidu Research No.10 Xibeiwang East Road Beijing100193 China 10900 NE 8th St. Bellevue Washington98004 United States College of Engineering and Computer Science VinUniversity Viet Nam
Backdoor attacks aim to manipulate the victim model into producing specific outputs on any input injected with pre-designed triggers. Existing dirty-label backdoor attacks, despite showing high attack efficiency, suff...
来源: 评论
LAS-AT: Adversarial Training with Learnable Attack Strategy
arXiv
收藏 引用
arXiv 2022年
作者: Jia, Xiaojun Zhang, Yong Wu, Baoyuan Ma, Ke Wang, Jue Cao, Xiaochun Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyberspace Security University of Chinese Academy of Sciences Beijing China Tencent AI Lab Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen China Secure Computing Lab of Big Data Shenzhen Research Institute of Big Data Shenzhen China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
Adversarial training (AT) is always formulated as a minimax problem, of which the performance depends on the inner optimization that involves the generation of adversarial examples (AEs). Most previous methods adopt P... 详细信息
来源: 评论
Single-cell technologies: current and near future
收藏 引用
science China(Life sciences) 2025年 第1期68卷 1-4页
作者: Chenfei Wang Qi Liu Xiaohui Fan Tieliu Shi KeyLaboratory of Spine and Spinal CordInjury Repairand Regeneration Ministry of EducationOrthopedics DepartmentTongji HospitalBioinformatics DepartmentSchoolofLifeSciencesandTechnologyTongji UniversityShanghai 200082China Frontier Science Center for Stem Cells School of Life Sciences and TechnologyTongji UniversityShanghai 200092China Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine Shanghai East HospitalBioinformatics DepartmentSchool of Life Sciences and TechnologyTongji UniversityShanghai 200082China Research Institute of Intelligent Computing Zhejiang LabHangzhou 311121China Pharmaceutical Informatics Institute College of Pharmaceutical SciencesZhejiang UniversityHangzhou 310058China National Key Laboratory of Chinese Medicine Modernization Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxing 314103China Center for Bioinformatics and Computational Biology Shanghai Key Laboratory of Regulatory Biologythe Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai 200241China Key Laboratory of Advanced Theory and Application in Statistics and Data Science(MOE) School of StatisticsEast China Normal UniversityShanghai 200062China
Single-cell technologies enable the indepth exploration of multiple biological hierarchies at the scale of individual cells,which have deepened our knowledge of cellular diversity,tissue organization,and overall organ... 详细信息
来源: 评论
CPSketch: A ‘couple’ sketch-based heavy flow detection method
收藏 引用
Journal of Network and Computer Applications 2025年 242卷
作者: Renpin Yao Yang Cao Yunhe Cui Yi Chen Chun Guo Guowei Shen Engineering Research Center of Text Computing & Cognitive Intelligence Guizhou University China College of Computer Science and Technology Guizhou University China State Key Laboratory of Public Big Data Guizhou University China
One of the core challenges in network measurement for large-scale networks is the accurate and efficient identification of heavy flows. This task has grown increasingly complex due to limited memory resources and the ...
来源: 评论
Which Pixel to Annotate: a label-Efficient Nuclei Segmentation Framework
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Wei Li, Haofeng Li, Guanbin Han, Xiaoguang Wan, Xiang Shenzhen Research Institute of Big Data Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong at Shenzhen Shenzhen518172 China The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Pazhou Lab Guangzhou510330 China
Recently deep neural networks, which require a large amount of annotated samples, have been widely applied in nuclei instance segmentation of H&E stained pathology images. However, it is inefficient and unnecessar... 详细信息
来源: 评论
Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes
Classification of Breast Thermal Images into Healthy/Cancer ...
收藏 引用
2022 International Conference on Machine Learning and data Engineering, ICMLDE 2022
作者: Kadry, Seifedine Crespo, Rubén González Herrera-Viedma, Enrique Krishnamoorthy, Sujatha Rajinikanth, Venkatesan Faculty of Applied Computing and Technology Noroff University College Kristiansand94612 Norway Computer Science Department School of Engineering and Technology Universidad Internacional de la Rioja Andalusia26006 Spain Research Institute in Data Science and Computational Intelligence University of Granada Granada Spain Zhejiang Bioinformatics International Science and Technology Cooperation Center Wenzhou-Kean University Zhejiang Province China Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics Wenzhou-Kean University Zhejiang Province China Department of Computer Science and Engineering Saveetha School of Engineering SIMATS Tamil Nadu Chennai602105 India
In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is ... 详细信息
来源: 评论
INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Yunfan Cao, Qi Shen, Huawei Tao, Shuchang Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China Data Intelligence System Research Center Institute of Computing Technology CAS China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology CAS University of Chinese Academy of Sciences Beijing China
Collaborative filtering is one of the most common scenarios and popular research topics in recommender systems. Among existing methods, latent factor models, i.e., learning a specific embedding for each user/item by r... 详细信息
来源: 评论
JARVIS-Leaderboard:a large scale benchmark of materials design methods
收藏 引用
npj Computational Materials 2024年 第1期10卷 2280-2296页
作者: Kamal Choudhary Daniel Wines Kangming Li Kevin F.Garrity Vishu Gupta Aldo H.Romero Jaron T.Krogel Kayahan Saritas Addis Fuhr Panchapakesan Ganesh Paul R.C.Kent Keqiang Yan Yuchao Lin Shuiwang Ji Ben Blaiszik Patrick Reiser Pascal Friederich Ankit Agrawal Pratyush Tiwary Eric Beyerle Peter Minch Trevor David Rhone Ichiro Takeuchi Robert B.Wexler Arun Mannodi-Kanakkithodi Elif Ertekin Avanish Mishra Nithin Mathew Mitchell Wood Andrew Dale Rohskopf Jason Hattrick-Simpers Shih-Han Wang Luke E.K.Achenie Hongliang Xin Maureen Williams Adam J.Biacchi Francesca Tavazza Material Measurement Laboratory National Institute of Standards and TechnologyGaithersburgMD20899USA Department of Materials Science and Engineering University of Toronto27 King’s College CirTorontoONCanada Department of Electrical and Computer Engineering Northwestern UniversityEvanstonIL 60208USA Lewis-Sigler Institute for Integrative Genomics Princeton UniversityPrincetonNJ 08544USA Ludwig Institute for Cancer Research Princeton UniversityPrincetonNJ 08544USA Department of Physics and Astronomy West Virginia UniversityMorgantownWV 26506USA Materials Science and Technology Division Oak Ridge National LaboratoryOak RidgeTN 37831USA Center for Nanophase Materials Science Oak Ridge National LaboratoryOak RidgeTN 37831USA Computational Sciences and Engineering Division Oak Ridge National LaboratoryOak RidgeTN 37831USA Department of Computer Science and Engineering Texas A&M UniversityCollege StationTX 77843USA Globus University of ChicagoChicagoIL 60637USA Data Science and Learning Division Argonne National LabLemontIL 60439USA Institute of Nanotechnology Karlsruhe Institute of TechnologyKaiserstraße 1276131 KarlsruheGermany Institute of Theoretical Informatics Karlsruhe Institute of TechnologyKaiserstraße 1276131 KarlsruheGermany Department of Chemistry and Biochemistry and Institute for Physical Science and Technology University of MarylandCollege ParkMD 20742USA Department of Physics Applied Physics and AstronomyRensselaer Polytechnic InstituteTroyNY12180USA Department of Materials Science and Engineering University of MarylandCollege ParkMD20742USA Department of Chemistry and Institute of Materials Science and Engineering Washington University in St.LouisSt.LouisMO63130USA School of Materials Engineering Purdue UniversityWest LafayetteIN47907USA Department of Mechanical Science and Engineering University of Illinois Urbana-ChampaignUrbanaIllinois 61801USA Materials Research Laboratory University of Illinois Urbana-ChampaignUrbanaIL 61801USA Theore
Lack of rigorous reproducibility and validation are significant hurdles for scientific development across many *** science,in particular,encompasses a variety of experimental and theoretical approaches that require ca... 详细信息
来源: 评论
Automatically derived stateful network functions including non-field attributes
Automatically derived stateful network functions including n...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in computing and Communications (TrustCom)
作者: Bin Yuan Shengyao Sun Xianjun Deng Deqing Zou Haoyu Chen Shenghui Li Hai Jin School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security Shenzhen Research Institute Huazhong University of Science and Technology Shenzhen China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Cluster and Grid Computing Lab
The modern network consists of thousands of network devices from different suppliers that perform distinct code-pendent functions, such as routing, switching, modifying header fields, and access control across physica... 详细信息
来源: 评论
基于污点和概率的逃逸恶意软件多路径探索
收藏 引用
Security and Safety 2023年 第3期2卷 83-106页
作者: 徐钫洲 张网 羌卫中 金海 National Engineering Research Center for Big Data Technology and System Wuhan 430074China Services Computing Technology and System Lab Cluster and Grid Computing LabWuhan 430074China Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data SecurityWuhan 430074China School of Cyber Science and Engineering Huazhong University of Science and TechnologyWuhan 430074China School of Computer Science and Technology Huazhong University of Science and TechnologyWuhan 430074China Jinyinhu Laboratory Wuhan 430040China
Static analysis is often impeded by malware obfuscation techniques,such as encryption and packing,whereas dynamic analysis tends to be more resistant to obfuscation by leveraging concrete execution ***,malware can emp... 详细信息
来源: 评论