咨询与建议

限定检索结果

文献类型

  • 465 篇 期刊文献
  • 320 篇 会议

馆藏范围

  • 785 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 498 篇 工学
    • 364 篇 计算机科学与技术...
    • 308 篇 软件工程
    • 97 篇 生物工程
    • 77 篇 信息与通信工程
    • 69 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 52 篇 电气工程
    • 48 篇 控制科学与工程
    • 35 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 18 篇 机械工程
    • 17 篇 安全科学与工程
    • 16 篇 仪器科学与技术
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 网络空间安全
  • 303 篇 理学
    • 120 篇 生物学
    • 116 篇 数学
    • 92 篇 物理学
    • 41 篇 统计学(可授理学、...
    • 29 篇 化学
    • 18 篇 地球物理学
    • 18 篇 系统科学
  • 116 篇 管理学
    • 61 篇 图书情报与档案管...
    • 60 篇 管理科学与工程(可...
    • 20 篇 工商管理
  • 63 篇 医学
    • 55 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 15 篇 法学
  • 11 篇 农学
  • 9 篇 经济学
  • 7 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 28 篇 machine learning
  • 26 篇 deep neural netw...
  • 25 篇 semantics
  • 22 篇 deep learning
  • 18 篇 training
  • 16 篇 computational mo...
  • 12 篇 memory managemen...
  • 12 篇 feature extracti...
  • 11 篇 task analysis
  • 10 篇 data models
  • 8 篇 scalability
  • 8 篇 generative adver...
  • 8 篇 graph neural net...
  • 8 篇 predictive model...
  • 7 篇 parallel process...
  • 7 篇 magnetic resonan...
  • 7 篇 computer archite...
  • 7 篇 throughput
  • 7 篇 containers
  • 7 篇 efficiency

机构

  • 102 篇 national enginee...
  • 56 篇 school of comput...
  • 50 篇 school of cyber ...
  • 36 篇 national enginee...
  • 31 篇 services computi...
  • 31 篇 hubei engineerin...
  • 28 篇 hubei key labora...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 20 篇 hiroshima astrop...
  • 20 篇 department of ph...
  • 19 篇 school of softwa...
  • 18 篇 university of ch...
  • 17 篇 department of ph...
  • 16 篇 berkeley institu...
  • 16 篇 secure computing...
  • 16 篇 zhejiang lab
  • 15 篇 department of ph...
  • 15 篇 physics division...
  • 15 篇 national energy ...

作者

  • 112 篇 hai jin
  • 112 篇 jin hai
  • 42 篇 xiaofei liao
  • 25 篇 hu shengshan
  • 21 篇 haikun liu
  • 20 篇 liao xiaofei
  • 19 篇 long zheng
  • 18 篇 zou deqing
  • 17 篇 zhang leo yu
  • 17 篇 nachman benjamin
  • 16 篇 wu baoyuan
  • 15 篇 bastieri d.
  • 15 篇 green d.
  • 15 篇 orlando e.
  • 15 篇 lubrano p.
  • 15 篇 gargano f.
  • 15 篇 spinelli p.
  • 15 篇 kuss m.
  • 15 篇 mikuni vinicius
  • 15 篇 yu zhang

语言

  • 591 篇 英文
  • 189 篇 其他
  • 10 篇 中文
检索条件"机构=Cognitive Computing and Data Science Research Lab"
785 条 记 录,以下是451-460 订阅
排序:
Distilling the Unknown to Unveil Certainty
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Zhilin Cao, Longbing Zhang, Yixuan Lin, Kun-Yu Zheng, Wei-Shi The Data Science Lab School of Computing Macquarie University SydneyNSW2109 Australia The DataX Research Centre Macquarie University SydneyNSW2109 Australia The China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing Hangzhou Dianzi University Zhejiang Hangzhou310005 China The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510275 China The School of Computer Science and Engineering Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University Guangzhou510275 China
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained, ensuring network robustness and reliability. This ... 详细信息
来源: 评论
Adaptive information seeking for open-domain question answering
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Yunchang Pang, Liang Lan, Yanyan Shen, Huawei Cheng, Xueqi Data Intelligence System Research Center CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Institute for AI Industry Research Tsinghua University
Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by... 详细信息
来源: 评论
Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models
arXiv
收藏 引用
arXiv 2022年
作者: Zhan, Jingtao Xie, Xiaohui Mao, Jiaxin Liu, Yiqun Guo, Jiafeng Zhang, Min Ma, Shaoping Department of Computer Science and Technology Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performanc... 详细信息
来源: 评论
GradSA: Gradient Sparsification and Accumulation for Communication-Efficient Distributed Deep Learning  15th
GradSA: Gradient Sparsification and Accumulation for Communi...
收藏 引用
15th International Conference on Green, Pervasive, and Cloud computing, GPC 2020
作者: Liu, Bo Jiang, Wenbin Zhao, Shaofeng Jin, Hai He, Bingsheng National Engineering Research Center for Big Data Technology and System Service Computing Technology and System Lab Cluster and Grid Computing Lab Huazhong University of Science and Technology Wuhan China Wuhan National Laboratory for Optoelectronics Key Laboratory of Information Storage System Engineering Research Center of Data Storage Systems and Technology Huazhong University of Science and Technology Wuhan China Library Henan University of Economics and Law Zhengzhou China Department of Computer Science School of Computing National University of Singapore Singapore Singapore
Large-scale distributed deep learning is of great importance in various applications. For distributed training, the inter-node gradient communication often becomes the performance bottleneck. Gradient sparsification h... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Multi-objective hyperparameter optimization with performance uncertainty
arXiv
收藏 引用
arXiv 2022年
作者: Morales-Hernández, Alejandro Van Nieuwenhuyse, Inneke Nápoles, Gonzalo Core Lab VCCM Flanders Make Limburg Belgium Research Group Logistics Hasselt University Agoralaan Gebouw D Diepenbeek Limburg 3590 Belgium Data Science Institute Hasselt University Agoralaan Gebouw D Diepenbeek Limburg 3590 Belgium Department of Cognitive Science & Artificial Intelligence Tilburg University Netherlands
The performance of any Machine Learning algorithm is impacted by the choice of its hyperparameters. As training and evaluating a ML algorithm is usually expensive, the hyperparameter optimization (HPO) method needs to... 详细信息
来源: 评论
Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding for Next-POI Recommendation
Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-grap...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Xiaoqian Liu Xiuyun Li Yuan Cao Fan Zhang Xiongnan Jin Jinpeng Chen School of Computer Science (National Pilot Software Engineering School) Beijing University of Posts and Telecommunications Beijing China Key Laboratory of Trustworthy Distributed Computing and Service (BUPT) Ministry of Education Beijing China The Technology Innovation Center of Cultural Tourism Big Data of Hebei Province Chengde China Hebei Normal University for Nationalities Chengde China Knowledge Discovery and Data Mining Research Center Zhejiang Lab Hangzhou China
Next-POI recommendation aims to explore from user check-in sequence to predict the next possible location to be visited. Existing methods are often difficult to model the implicit association of multi-modal data with ...
来源: 评论
Full phase space resonant anomaly detection
收藏 引用
Physical Review D 2024年 第5期109卷 055015-055015页
作者: Erik Buhmann Cedric Ewen Gregor Kasieczka Vinicius Mikuni Benjamin Nachman David Shih Institute for Experimental Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA New High Energy Theory Center Rutgers University Piscataway New Jersey 08854-8019 USA
Physics beyond the Standard Model that is resonant in one or more dimensions has been a longstanding focus of countless searches at colliders and beyond. Recently, many new strategies for resonant anomaly detection ha... 详细信息
来源: 评论
High-Frequency Stereo Matching Network
High-Frequency Stereo Matching Network
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Haoliang Zhao Huizhou Zhou Yongjun Zhang Jie Chen Yitong Yang Yong Zhao Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry State Key Laboratory of Public Big Data College of Computer Science and Technology Institute of Artificial Intelligence Guizhou University Guiyang Guizhou China Ghost-Valley AI Technology Shenzhen Guangdong China School of Physics and Optoelectronic Engineering Guangdong University of Technology Guangzhou China The Key Laboratory of Integrated Microsystems Shenzhen Graduate School Peking University China
In the field of binocular stereo matching, remarkable progress has been made by iterative methods like RAFT-Stereo and CREStereo. However, most of these methods lose information during the iterative process, making it...
来源: 评论
Match-ignition: Plugging PageRank into transformer for long-form text matching
arXiv
收藏 引用
arXiv 2021年
作者: Pang, Liang Lan, Yanyan Cheng, Xueqi Data Intelligence System Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China Institute for AI Industry Research Tsinghua University Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Neural text matching models have been widely used in community question answering, information retrieval, and dialogue. However, these models designed for short texts cannot well address the long-form text matching pr...
来源: 评论