咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 318 篇 会议

馆藏范围

  • 777 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 494 篇 工学
    • 359 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 98 篇 生物工程
    • 76 篇 信息与通信工程
    • 69 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 50 篇 电气工程
    • 46 篇 控制科学与工程
    • 35 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 18 篇 机械工程
    • 16 篇 仪器科学与技术
    • 16 篇 安全科学与工程
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 网络空间安全
  • 302 篇 理学
    • 120 篇 生物学
    • 116 篇 数学
    • 92 篇 物理学
    • 42 篇 统计学(可授理学、...
    • 29 篇 化学
    • 18 篇 地球物理学
    • 18 篇 系统科学
  • 115 篇 管理学
    • 61 篇 图书情报与档案管...
    • 59 篇 管理科学与工程(可...
    • 20 篇 工商管理
  • 62 篇 医学
    • 54 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 15 篇 法学
  • 11 篇 农学
  • 9 篇 经济学
  • 7 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 26 篇 deep neural netw...
  • 26 篇 machine learning
  • 23 篇 semantics
  • 21 篇 deep learning
  • 18 篇 training
  • 16 篇 computational mo...
  • 12 篇 memory managemen...
  • 11 篇 task analysis
  • 11 篇 feature extracti...
  • 10 篇 data models
  • 8 篇 scalability
  • 8 篇 generative adver...
  • 8 篇 graph neural net...
  • 8 篇 predictive model...
  • 7 篇 parallel process...
  • 7 篇 magnetic resonan...
  • 7 篇 computer archite...
  • 7 篇 throughput
  • 7 篇 containers
  • 7 篇 efficiency

机构

  • 102 篇 national enginee...
  • 56 篇 school of comput...
  • 51 篇 school of cyber ...
  • 36 篇 national enginee...
  • 31 篇 services computi...
  • 31 篇 hubei engineerin...
  • 28 篇 hubei key labora...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 21 篇 hiroshima astrop...
  • 21 篇 department of ph...
  • 19 篇 school of softwa...
  • 18 篇 university of ch...
  • 17 篇 department of ph...
  • 16 篇 berkeley institu...
  • 16 篇 secure computing...
  • 16 篇 zhejiang lab
  • 15 篇 department of ph...
  • 15 篇 physics division...
  • 15 篇 national energy ...

作者

  • 112 篇 hai jin
  • 109 篇 jin hai
  • 42 篇 xiaofei liao
  • 25 篇 hu shengshan
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 19 篇 liao xiaofei
  • 18 篇 zou deqing
  • 17 篇 zhang leo yu
  • 17 篇 nachman benjamin
  • 16 篇 wu baoyuan
  • 15 篇 bastieri d.
  • 15 篇 green d.
  • 15 篇 orlando e.
  • 15 篇 lubrano p.
  • 15 篇 gargano f.
  • 15 篇 spinelli p.
  • 15 篇 kuss m.
  • 15 篇 mikuni vinicius
  • 15 篇 yu zhang

语言

  • 623 篇 英文
  • 149 篇 其他
  • 8 篇 中文
检索条件"机构=Cognitive Computing and Data Science Research Lab"
777 条 记 录,以下是551-560 订阅
排序:
Superpage-Friendly Page Table Design for Hybrid Memory Systems
Superpage-Friendly Page Table Design for Hybrid Memory Syste...
收藏 引用
2020国际计算机前沿大会
作者: Xiaoyuan Wang Haikun Liu Xiaofei Liao Hai Jin National Engineering Research Center for Big Data Technology and System Huazhong University of Science and Technology Service Computing Technology and System Lab Huazhong University of Science and Technology Cluster and Grid Computing Lab Huazhong University of Science and Technology School of Computer Science and Technology Huazhong University of Science and Technology
Page migration has long been adopted in hybrid memory systems comprising dynamic random access memory(DRAM) and non-volatile memories(NVMs), to improve the system performance and energy ***, page migration introduces ... 详细信息
来源: 评论
A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications
A Locality-Aware Energy-Efficient Accelerator for Graph Mini...
收藏 引用
IEEE/ACM International Symposium on Microarchitecture (MICRO)
作者: Pengcheng Yao Long Zheng Zhen Zeng Yu Huang Chuangyi Gui Xiaofei Liao Hai Jin Jingling Xue National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China School of Computer Science and Engineering UNSW Sydney Australia
Graph mining is becoming increasingly important due to the ever-increasing demands on analyzing complex structures in graphs. Existing graph accelerators typically hold most of the randomly-accessed data in an on-chip... 详细信息
来源: 评论
Accurate Latent Factor Analysis via Particle Swarm Optimizers
Accurate Latent Factor Analysis via Particle Swarm Optimizer...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Jia Chen Xin Luo MengChu Zhou School of Cyber Science and Technology Beihang University Beijing China Chongqing Key Lab. of Big Data and Intelligent Computing and the Chongqing Engineering Research Center of Big Data Application for Smart Cities Chongqing Institute of Green and Intelligent Technology Chongqing School University of Chinese Academy of Sciences Chongqing China New Jersey Institute of Technology Newark NJ USA
A stochastic-gradient-descent-based Latent Factor Analysis (LFA) model is highly efficient in representative learning of a High-Dimensional and Sparse (HiDS) matrix. Its learning rate adaptation is vital in ensuring i... 详细信息
来源: 评论
SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data
arXiv
收藏 引用
arXiv 2024年
作者: Karchev, Konstantin Grayling, Matthew Boyd, Benjamin M. Trotta, Roberto Mandel, Kaisey S. Weniger, Christoph Via Bonomea 265 TriesteI-34136 Italy Institute of Astronomy Kavli Institute for Cosmology Madingley Road CambridgeCB3 0HA United Kingdom Astrophysics Group Physics Department Blackett Lab Imperial College London Prince Consort Road LondonSW7 2AZ United Kingdom INFN - National Institute for Nuclear Physics Via Valerio 2 TriesteI-34127 Italy Italian Research Center on High-Performance Computing Big Data and Quantum Computing Via Magnanelli 2 BO Casalecchio di RenoI-40033 Italy Statistical Laboratory DPMMS University of Cambridge Wilberforce Road CambridgeCB3 0WB United Kingdom University of Amsterdam Science Park 904 AmsterdamNL-1098 XH Netherlands
We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovæ (SNæ Ia). Our hardware-accelerated forward model, released in the Pytho... 详细信息
来源: 评论
Risk-based decision making: estimands for sequential prediction under interventions
arXiv
收藏 引用
arXiv 2023年
作者: Luijken, Kim Morzywolek, Pawel van Amsterdam, Wouter Cinà, Giovanni Hoogland, Jeroen Keogh, Ruth Krijthe, Jesse Magliacane, Sara van Ommen, Thijs Peek, Niels Putter, Hein van Smeden, Maarten Sperrin, Matthew Wang, Junfeng Weir, Daniala Didelez, Vanessa van Geloven, Nan Department of Epidemiology Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht Netherlands Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium Department of Statistics University of Washington Seattle United States Department of Medical Informatics Amsterdam University Medical Centers Amsterdam Netherlands Institute for Logic Language and Computation University of Amsterdam Amsterdam Netherlands Pacmed Amsterdam Netherlands Department of Epidemiology and Data Science Amsterdam University Medical Centers Amsterdam Netherlands Department of Medical Statistics London School of Hygiene & Tropical Medicine Keppel Street London United Kingdom Pattern Recognition and Bio-Informatics Group EEMCS Delft University of Technology Delft Netherlands Amsterdam Machine Learning Lab University of Amsterdam Amsterdam Netherlands Department of Information and Computing Sciences Utrecht University Utrecht Netherlands Division of Informatics Imaging and Data Science Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom Department of Biomedical Data Sciences Leiden University Medical Center Leiden Netherlands Division of Pharmacoepidemiology and Clinical Pharmacology Department of Pharmaceutical Sciences Utrecht University Utrecht Netherlands Department of Biometry and Data Management Leibniz Institute for Prevention Research Epidemiology - BIPS Bremen Germany Faculty of Mathematics/Computer Science University of Bremen Bremen Germany
Prediction models are used amongst others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are adv... 详细信息
来源: 评论
Structure Embedded Nucleus Classification for Histopathology Images
arXiv
收藏 引用
arXiv 2023年
作者: Lou, Wei Wan, Xiang Li, Guanbin Lou, Xiaoying Li, Chenghang Gao, Feng Li, Haofeng Shenzhen Research Institute of Big Data Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong at Shenzhen Shenzhen518172 China Pazhou Lab Guangzhou510330 China The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Department of Pathology Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases The Sixth Affiliated Hospital of Sun Yat-sen University Guangzhou China Artificial Intelligence Thrust The Hong Kong University of Science and Technology at Guangzhou Guangzhou510030 China Department of Colorectal Surgery Department of General Surgery Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou510655 China Shanghai Artificial Intelligence Laboratory Shanghai China
Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural ne... 详细信息
来源: 评论
LOREN: Logic-regularized reasoning for interpretable fact verification
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Jiangjie Bao, Qiaoben Sun, Changzhi Zhang, Xinbo Chen, Jiaze Zhou, Hao Xiao, Yanghua Li, Lei Shanghai Key Laboratory of Data Science School of Computer Science Fudan University China ByteDance AI Lab University of California Santa Barbara United States Fudan-Aishu Cognitive Intelligence Joint Research Center
Given a natural language statement, how to verify its veracity against a large-scale textual knowledge source like Wikipedia? Most existing neural models make predictions without giving clues about which part of a fal... 详细信息
来源: 评论
Rethinking the trigger of backdoor attack
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yiming Zhai, Tongqing Wu, Baoyuan Jiang, Yong Li, Zhifeng Xia, Shu-Tao Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen China Secure Computing Lab of Big Data Shenzhen Research Institute of Big Data Shenzhen China Tencent AI Lab Shenzhen China
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of the infected model will be maliciously changed if the hidden backdoor is activated by the attacker-de... 详细信息
来源: 评论
Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation
arXiv
收藏 引用
arXiv 2023年
作者: Acosta, Fernando Torales Mikuni, Vinicius Nachman, Benjamin Arratia, Miguel Karki, Bishnu Milton, Ryan Karande, Piyush Angerami, Aaron Physics Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States National Energy Research Scientific Computing Center Berkeley Lab BerkeleyCA94720 United States Berkeley Institute for Data Science University of California BerkeleyCA94720 United States Department of Physics and Astronomy University of California RiversideCA92521 United States Thomas Jefferson National Accelerator Facility Newport NewsVA23606 United States Computational Engineering Division Lawrence Livermore National Laboratory LivermoreCA94550 United States Nuclear and Chemical Science Division Lawrence Livermore National Laboratory LivermoreCA94550 United States
Score based generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets. Recent advances in generative models have used images with 3D voxel... 详细信息
来源: 评论
On-edge multi-task transfer learning: Model and practice with data-driven task allocation
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Zimu Chen, Qiong Hu, Chuang Wang, Dan Liu, Fangming The National Engineering Research Center for Big Data Technology and System Key Laboratory of Services Computing Technology and System Ministry of Education School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China The Edge Cloud Innovation Lab. Technical Innovation Department Cloud BU Huawei Technologies Co. Ltd. Shenzhen China The Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong Hong Kong
On edge devices, data scarcity occurs as a common problem where transfer learning serves as a widely-suggested remedy. Nevertheless, transfer learning imposes heavy computation burden to the resource-constrained edge ... 详细信息
来源: 评论