咨询与建议

限定检索结果

文献类型

  • 459 篇 期刊文献
  • 318 篇 会议

馆藏范围

  • 777 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 494 篇 工学
    • 359 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 98 篇 生物工程
    • 76 篇 信息与通信工程
    • 69 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 50 篇 电气工程
    • 46 篇 控制科学与工程
    • 35 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 18 篇 机械工程
    • 16 篇 仪器科学与技术
    • 16 篇 安全科学与工程
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 网络空间安全
  • 302 篇 理学
    • 120 篇 生物学
    • 116 篇 数学
    • 92 篇 物理学
    • 42 篇 统计学(可授理学、...
    • 29 篇 化学
    • 18 篇 地球物理学
    • 18 篇 系统科学
  • 115 篇 管理学
    • 61 篇 图书情报与档案管...
    • 59 篇 管理科学与工程(可...
    • 20 篇 工商管理
  • 62 篇 医学
    • 54 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 15 篇 法学
  • 11 篇 农学
  • 9 篇 经济学
  • 7 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 26 篇 deep neural netw...
  • 26 篇 machine learning
  • 23 篇 semantics
  • 21 篇 deep learning
  • 18 篇 training
  • 16 篇 computational mo...
  • 12 篇 memory managemen...
  • 11 篇 task analysis
  • 11 篇 feature extracti...
  • 10 篇 data models
  • 8 篇 scalability
  • 8 篇 generative adver...
  • 8 篇 graph neural net...
  • 8 篇 predictive model...
  • 7 篇 parallel process...
  • 7 篇 magnetic resonan...
  • 7 篇 computer archite...
  • 7 篇 throughput
  • 7 篇 containers
  • 7 篇 efficiency

机构

  • 102 篇 national enginee...
  • 56 篇 school of comput...
  • 51 篇 school of cyber ...
  • 36 篇 national enginee...
  • 31 篇 services computi...
  • 31 篇 hubei engineerin...
  • 28 篇 hubei key labora...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 21 篇 hiroshima astrop...
  • 21 篇 department of ph...
  • 19 篇 school of softwa...
  • 18 篇 university of ch...
  • 17 篇 department of ph...
  • 16 篇 berkeley institu...
  • 16 篇 secure computing...
  • 16 篇 zhejiang lab
  • 15 篇 department of ph...
  • 15 篇 physics division...
  • 15 篇 national energy ...

作者

  • 112 篇 hai jin
  • 109 篇 jin hai
  • 42 篇 xiaofei liao
  • 25 篇 hu shengshan
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 19 篇 liao xiaofei
  • 18 篇 zou deqing
  • 17 篇 zhang leo yu
  • 17 篇 nachman benjamin
  • 16 篇 wu baoyuan
  • 15 篇 bastieri d.
  • 15 篇 green d.
  • 15 篇 orlando e.
  • 15 篇 lubrano p.
  • 15 篇 gargano f.
  • 15 篇 spinelli p.
  • 15 篇 kuss m.
  • 15 篇 mikuni vinicius
  • 15 篇 yu zhang

语言

  • 623 篇 英文
  • 149 篇 其他
  • 8 篇 中文
检索条件"机构=Cognitive Computing and Data Science Research Lab"
777 条 记 录,以下是601-610 订阅
排序:
Visible-Thermal Cross-Modality Class-Incremental Learning
收藏 引用
Expert Systems with Applications 2025年
作者: Xinjie Yao Yingxue Wang Yu Wang Pengfei Zhu Ruipu Zhao Weihao Li Shenglei Pei Wanyu Lin College of Intelligence and Computing Tianjin University Tianjin 300350 China Engineering Research Center of City Intelligence and Digital Governance Ministry of Education of the People’s Republic of China Tianjin 300350 China Haihe Lab of ITAI Tianjin 300350 China National Engineering Research Center Public Safety Risk Perception and Control by Big Data Beijing 100041 China School of New Media and Communication Tianjin University Tianjin 300350 China School of Intelligence Science and Engineering Qinghai Minzu University Xining 810007 China Department of Computing The Hong Kong Polytechnic University Hong Kong 999077 China
Visible-thermal cross-modality learning has gained significant success by utilizing information from different sources to improve performance in downstream tasks. To make cross-modality learning methods more practical...
来源: 评论
Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound: The TDSC-ABUS Challenge
arXiv
收藏 引用
arXiv 2025年
作者: Luo, Gongning Xu, Mingwang Chen, Hongyu Liang, Xinjie Tao, Xing Ni, Dong Jeong, Hyunsu Kim, Chulhong Stock, Raphael Baumgartner, Michael Kirchhoff, Yannick Rokuss, Maximilian Maier-Hein, Klaus Yang, Zhikai Fan, Tianyu Boutry, Nicolas Tereshchenko, Dmitry Moine, Arthur Charmetant, Maximilien Sauer, Jan Du, Hao Bai, Xiang-Hui Raikar, Vipul Pai Montoya-Del-Angel, Ricardo Martí, Robert Luna, Miguel Lee, Dongmin Qayyum, Abdul Mazher, Moona Guo, Qihui Wang, Changyan Awasthi, Navchetan Zhao, Qiaochu Wang, Wei Wang, Kuanquan Wang, Qiucheng Dong, Suyu School of Computer Science and Technology Harbin Institute of Technology Harbin150001 China Department of Mathematics Faculty of Science National University of Singapore Singapore National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Medical School Shenzhen University Shenzhen China Laboratory Shenzhen University Shenzhen China School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China Pohang Korea Republic of Heidelberg Division of Medical Image Computing Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Germany Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Germany Department of Biomedical Engineering and Health KTH Royal Institute of Technology Stockholm Sweden France FathomX Singapore Saw Swee Hock School of Public Health National University of Singapore Singapore Philips Research University of Girona Spain Department of Robotics and Mechatronics Engineering DGIST Korea Republic of Department of Interdisciplinary Studies of Artificial Intelligence DGIST Korea Republic of National Heart and Lung Institute Faculty of Medicine Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Lab School of Communication and Information Engineering Shanghai University Shanghai China Faculty of Science Mathematics and Computer Science Informatics Institute University of Amsterdam Amsterdam1090 GH Netherlands Department of Biomedical Engineering and Physics Amsterdam UMC Amsterdam1081 HV Netherlands Xi’an Jiaotong-Liverpool University China Department of Ultrasound Harbin Medical University Cancer Hospital No. 150 Haping Road Nangang
Breast cancer is one of the most common causes of death among women worldwide. Early detection helps in reducing the number of deaths. Automated 3D Breast Ultrasound (ABUS) is a newer approach for breast screening, wh... 详细信息
来源: 评论
Experiences of young people and their caregivers of using technology to manage type 1 diabetes mellitus: Systematic literature review and narrative synthesis
收藏 引用
JMIR Diabetes 2021年 第1期6卷 e20973页
作者: Brew-Sam, Nicola Chhabra, Madhur Parkinson, Anne Hannan, Kristal Brown, Ellen Pedley, Lachlan Brown, Karen Wright, Kristine Pedley, Elizabeth Nolan, Christopher J. Phillips, Christine Suominen, Hanna Tricoli, Antonio Desborough, Jane Department of Health Services Research and Policy Research School of Population Health College of Health and Medicine Australian National University Building 62 Mills Rd Acton Canberra 2601 ACT Australia Canberra Health Services Canberra Australia ANU Medical School College of Health and Medicine Australian National University Canberra Australia John Curtin School of Medical Research College of Health and Medicine Australian National University Canberra Australia School of Computing College of Engineering and Computer Science Australian National University Canberra Australia Department of Computing University of Turku Turku Finland Data61 Commonwealth Scientific and Industrial Research Organisation Canberra Australia Nanotechnology Research Lab Research School of Chemistry College of Science Australian National University Canberra Australia
Background: In the last decade, diabetes management has begun to transition to technology-based care, with young people being the focus of many technological advances. Yet, detailed insights into the experiences of yo... 详细信息
来源: 评论
Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classification  23rd
Spatiotemporal Attention Autoencoder (STAAE) for ADHD Classi...
收藏 引用
23rd International Conference on Medical Image computing and Computer-Assisted Intervention, MICCAI 2020
作者: Dong, Qinglin Qiang, Ning Lv, Jinglei Li, Xiang Liu, Tianming Li, Quanzheng Center for Advanced Medical Computing and Analysis Department of Radiology Massachusetts General Hospital and Harvard Medical School BostonMA United States School of Physics and Information Technology Shaanxi Normal University Xian China School of Biomedical Engineering and Sydney Imaging Brain and Mind Centre The University of Sydney Camperdown Australia Cortical Architecture Imaging and Discovery Lab Department of Computer Science and Bioimaging Research Center The University of Georgia AthensGA United States MGH & BWH Center for Clinical Data Science BostonMA United States
It has been of great interest in the neuroimaging community to model spatiotemporal brain function and disorders based on resting state functional magnetic resonance imaging (rfMRI). A variety of spatiotemporal method... 详细信息
来源: 评论
Discovering Functional Brain Networks with 3D Residual Autoencoder (ResAE)  23rd
Discovering Functional Brain Networks with 3D Residual Autoe...
收藏 引用
23rd International Conference on Medical Image computing and Computer-Assisted Intervention, MICCAI 2020
作者: Dong, Qinglin Qiang, Ning Lv, Jinglei Li, Xiang Liu, Tianming Li, Quanzheng Center for Advanced Medical Computing and Analysis Department of Radiology Massachusetts General Hospital and Harvard Medical School BostonMA United States School of Physics and Information Technology Shaanxi Normal University Xian China School of Biomedical Engineering and Sydney Imaging Brain and Mind Centre The University of Sydney Camperdown Australia Cortical Architecture Imaging and Discovery Lab Department of Computer Science and Bioimaging Research Center The University of Georgia AthensGA United States MGH & BWH Center for Clinical Data Science BostonMA United States
Functional MRI has attracted increasing attention in cognitive neuroscience and clinical mental health research. Towards understanding how brain give rises to mental phenomena, deep learning has been applied to functi... 详细信息
来源: 评论
Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks
收藏 引用
Medical Image Analysis 2022年 78卷 102396页
作者: Subramaniam, Pooja Kossen, Tabea Ritter, Kerstin Hennemuth, Anja Hildebrand, Kristian Hilbert, Adam Sobesky, Jan Livne, Michelle Galinovic, Ivana Khalil, Ahmed A. Fiebach, Jochen B. Frey, Dietmar Madai, Vince I. CLAIM - Charité Lab for AI in Medicine Charité Universitätsmedizin Berlin Germany Department of Computer Engineering and Microelectronics Computer Vision & Remote Sensing Technical University Berlin Berlin Germany Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité Universitätsmedizin Berlin Berlin Germany Fraunhofer MEVIS Max-von-Laue-Str. 2 Bremen Germany Department VI Computer Science and Media Beuth University of Applied Sciences Berlin Germany Johanna-Etienne-Hospital Neuss Germany Centre for Stroke Research Berlin Charité Universitätsmedizin Berlin Berlin Germany Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany Mind Brain Body Institute Berlin School of Mind and Brain Humboldt University Berlin Berlin Germany Berlin Institute of Health Berlin Germany School of Computing and Digital Technology Faculty of Computing Engineering and the Built Environment Birmingham City University Birmingham United Kingdom QUEST-Center for Transforming Biomedical Research Berlin Institute of Health Charité Universitätsmedizin Berlin Charitéplatz 1 Berlin10117 Germany
Deep learning requires large labeled datasets that are difficult to gather in medical imaging due to data privacy issues and time-consuming manual labeling. Generative Adversarial Networks (GANs) can alleviate these c... 详细信息
来源: 评论
Sharpening semantic gradient in a planarized sentence representation
收藏 引用
Neural networks : the official journal of the International Neural Network Society 2025年 190卷 107687页
作者: Caiwei Yang Yanping Chen Shuai Yu Bo Dong Jiwei Qin Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Guizhou University Guiyang 550025 Guizhou PR China State Key Laboratory of Public Big Data Guizhou university Guiyang 550025 Guizhou PR China. Electronic address: gs.cwyang21@***. State Key Laboratory of Public Big Data Guizhou university Guiyang 550025 Guizhou PR China. Electronic address: ypench@***. State Key Laboratory of Public Big Data Guizhou university Guiyang 550025 Guizhou PR China. Electronic address: gs.syu21@***. Department of Computer Science and Technology Xi'an Jiaotong University Xi'an 710049 Shanxi PR China. Electronic address: dong.bo@***. College of Information Science and Engineering Xinjiang University Urumqi 830046 Xinjiang PR China. Electronic address: jwqin_xju@***.
Mapping a sentence into a two-dimensional representation has the advantage of unfolding nested semantic structures in a sentence and encoding the interaction between tokens. In the planarized sentence representation, ... 详细信息
来源: 评论
Artificial Intelligence for Dementia research Methods Optimization
arXiv
收藏 引用
arXiv 2023年
作者: Bucholc, Magda James, Charlotte Al Khleifat, Ahmad Badhwar, AmanPreet Clarke, Natasha Dehsarvi, Amir Madan, Christopher R. Marzi, Sarah J. Shand, Cameron Schilder, Brian M. Tamburin, Stefano Tantiangco, Hanz M. Lourida, Ilianna Llewellyn, David J. Ranson, Janice M. Cognitive Analytics Research Lab School of Computing Engineering & Intelligent Systems Ulster University Derry United Kingdom NIHR Bristol Biomedical Research Centre University Hospitals Bristol Weston NHS Foundation Trust University of Bristol Bristol United Kingdom Department of Basic and Clinical Neuroscience Institute of Psychiatry Psychology & Neuroscience King's College London London United Kingdom Lab Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal Canada Institut de Génie Biomédical Université de Montréal Montréal Canada Département de Pharmacologie et Physiologie Université de Montréal Montréal Canada Aberdeen Biomedical Imaging Centre School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen United Kingdom School of Psychology University of Nottingham Nottingham United Kingdom UK Dementia Research Institute Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Department of Neurosciences Biomedicine and Movement Sciences University of Verona Verona Italy Information School University of Sheffield Sheffield United Kingdom University of Exeter Medical School Exeter United Kingdom The Alan Turing Institute London United Kingdom
Introduction: Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. Methods: We... 详细信息
来源: 评论
MetaFuse: A Pre-trained Fusion Model for Human Pose Estimation
MetaFuse: A Pre-trained Fusion Model for Human Pose Estimati...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Rongchang Xie Chunyu Wang Yizhou Wang Center for Data Science Peking University Deepwise AI Lab Microsoft Research Asia Adv. Inst. of Info. Tech. Peking University Center on Frontiers of Computing Studies Peking University CS Dept. Peking University
Cross view feature fusion is the key to address the occlusion problem in human pose estimation. The current fusion methods need to train a separate model for every pair of cameras making them difficult to scale. In th... 详细信息
来源: 评论
MetaFuse: A Pre-trained Fusion Model for Human Pose Estimation
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Rongchang Wang, Chunyu Wang, Yizhou Center for Data Science Peking University Adv. Inst. of Info. Tech. Peking University Center on Frontiers of Computing Studies Peking University CS Dept. Peking University Microsoft Research Asia Deepwise AI Lab
Cross view feature fusion is the key to address the occlusion problem in human pose estimation. The current fusion methods need to train a separate model for every pair of cameras making them difficult to scale. In th... 详细信息
来源: 评论