咨询与建议

限定检索结果

文献类型

  • 456 篇 期刊文献
  • 318 篇 会议

馆藏范围

  • 774 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 497 篇 工学
    • 359 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 98 篇 生物工程
    • 76 篇 信息与通信工程
    • 69 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 50 篇 电气工程
    • 46 篇 控制科学与工程
    • 35 篇 电子科学与技术(可...
    • 24 篇 化学工程与技术
    • 18 篇 机械工程
    • 16 篇 仪器科学与技术
    • 16 篇 安全科学与工程
    • 14 篇 土木工程
    • 14 篇 核科学与技术
    • 13 篇 建筑学
  • 301 篇 理学
    • 119 篇 生物学
    • 116 篇 数学
    • 92 篇 物理学
    • 42 篇 统计学(可授理学、...
    • 29 篇 化学
    • 18 篇 地球物理学
    • 18 篇 系统科学
  • 115 篇 管理学
    • 61 篇 图书情报与档案管...
    • 59 篇 管理科学与工程(可...
    • 20 篇 工商管理
  • 60 篇 医学
    • 53 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 15 篇 法学
  • 11 篇 农学
  • 9 篇 经济学
  • 7 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 26 篇 deep neural netw...
  • 25 篇 machine learning
  • 23 篇 semantics
  • 21 篇 deep learning
  • 18 篇 training
  • 16 篇 computational mo...
  • 12 篇 memory managemen...
  • 11 篇 task analysis
  • 11 篇 feature extracti...
  • 10 篇 data models
  • 8 篇 scalability
  • 8 篇 generative adver...
  • 8 篇 graph neural net...
  • 8 篇 predictive model...
  • 7 篇 parallel process...
  • 7 篇 magnetic resonan...
  • 7 篇 computer archite...
  • 7 篇 throughput
  • 7 篇 containers
  • 7 篇 efficiency

机构

  • 101 篇 national enginee...
  • 56 篇 school of comput...
  • 51 篇 school of cyber ...
  • 36 篇 national enginee...
  • 31 篇 services computi...
  • 31 篇 hubei engineerin...
  • 28 篇 hubei key labora...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 22 篇 hiroshima astrop...
  • 21 篇 department of ph...
  • 19 篇 school of softwa...
  • 18 篇 university of ch...
  • 17 篇 department of ph...
  • 16 篇 berkeley institu...
  • 16 篇 secure computing...
  • 16 篇 zhejiang lab
  • 15 篇 department of ph...
  • 15 篇 physics division...
  • 15 篇 national energy ...

作者

  • 113 篇 hai jin
  • 108 篇 jin hai
  • 42 篇 xiaofei liao
  • 25 篇 hu shengshan
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 18 篇 liao xiaofei
  • 17 篇 zou deqing
  • 17 篇 zhang leo yu
  • 17 篇 nachman benjamin
  • 16 篇 wu baoyuan
  • 15 篇 bastieri d.
  • 15 篇 green d.
  • 15 篇 orlando e.
  • 15 篇 lubrano p.
  • 15 篇 gargano f.
  • 15 篇 spinelli p.
  • 15 篇 kuss m.
  • 15 篇 mikuni vinicius
  • 15 篇 yu zhang

语言

  • 620 篇 英文
  • 149 篇 其他
  • 8 篇 中文
检索条件"机构=Cognitive Computing and Data Science Research Lab"
774 条 记 录,以下是621-630 订阅
排序:
DeepKAF: A Heterogeneous CBR & Deep Learning Approach for NLP Prototyping
DeepKAF: A Heterogeneous CBR & Deep Learning Approach for NL...
收藏 引用
IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)
作者: Kareem Amin Stelios Kapetanakis Nikolaos Polatidis Klaus-Dieter Althoff Andreas Dengel Smart Data and Knowledge Services German Research Center for Artificial Intelligence Technische Universität Kaiserslautern Kaiserslautern Germany School of Computing Engineering and Mathematics University of Brighton Brighton United Kingdom Intelligent Information Systems Lab Institute of Computer Science University of Hildesheim Hildesheim Germany
With widespread modernization, digitization and transformations of most of industries, Artificial Intelligence (AI) has become the key enabler in that modernization journey. AI offers substantial capabilities to solve... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
An Early Stage researcher's Primer on Systems Medicine Terminology
Network and Systems Medicine
收藏 引用
Network and Systems Medicine 2021年 第1期4卷 2-50页
作者: Zanin, Massimiliano Aitya, Nadim A.A. Basilio, José Baumbach, Jan Benis, Arriel Behera, Chandan K. Bucholc, Magda Castiglione, Filippo Chouvarda, Ioanna Comte, Blandine Dao, Tien-Tuan Ding, Xuemei Pujos-Guillot, Estelle Filipovic, Nenad Finn, David P. Glass, David H. Harel, Nissim Iesmantas, Tomas Ivanoska, Ilinka Joshi, Alok Boudjeltia, Karim Zouaoui Kaoui, Badr Kaur, Daman Maguire, Liam P. McClean, Paula L. McCombe, Niamh De Miranda, João Luís Moisescu, Mihnea Alexandru Pappalardo, Francesco Polster, Annikka Prasad, Girijesh Rozman, Damjana Sacala, Ioan Sanchez-Bornot, Jose M. Schmid, Johannes A. Sharp, Trevor Solé-Casals, Jordi Spiwok, Vojtěch Spyrou, George M. Stalidzans, Egils Stres, Blaa Sustersic, Tijana Symeonidis, Ioannis Tieri, Paolo Todd, Stephen Van Steen, Kristel Veneva, Milena Wang, Da-Hui Wang, Haiying Wang, Hui Watterson, Steven Wong-Lin, Kongfatt Yang, Su Zou, Xin Schmidt, Harald H.H.W. Centro de Tecnología Biomédica Universidad Politécnica de Madrid Madrid Spain Intelligent Systems Research Centre School of Computing Engineering and Intelligent Systems Ulster University Ulster United Kingdom Center for Physiology and Pharmacology Institute of Vascular Biology and Thrombosis Research Medical University of Vienna Vienna Austria TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany Holon Israel CNR National Research Council IAC Institute for Applied Computing Rome Italy Lab of Computing Medical Informatics and Biomedical Imaging Technologies School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece Université Clermont Auvergne INRAE UNH Plateforme d'Exploration du Métabolisme MetaboHUB Clermont Clermont-Ferrand France Université de Technologie de Compiègne Compiègne France Labex MS2T Control of Technological Systems-of-Systems CNRS and Université de Technologie de Compiègne Compiègne France Faculty of Engineering University of Kragujevac Kragujevac Serbia Kragujevac Serbia Steinbeis Advanced Risk Technologies Institute Doo Kragujevac Kragujevac Serbia Pharmacology and Therapeutics School of Medicine Galway Neuroscience Centre National University of Ireland Galway Ireland School of Computing Ulster University Ulster United Kingdom Holon Israel Department of Mathematics and Natural Sciences Kaunas University of Technology Kaunas Lithuania Faculty of Computer Science and Engineering Ss. Cyril and Methodius University Skopje Macedonia Medicine Faculty Université Libre de Bruxelles CHU de Charleroi Charleroi Belgium Northern Ireland Centre for Stratified Medicine Biomedical Sciences Research Institute Ulster University Ulster United Kingdom Escola Superior de Tecnologia e Gestão Instituto Politécnico de Portalegre Portalegre Portugal Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal Faculty of Automatic Control and Computers University Politehnica of B
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, ... 详细信息
来源: 评论
Modeling Distributed Stream Processing Systems Under Heavy Workload
Modeling Distributed Stream Processing Systems Under Heavy W...
收藏 引用
International Conference on Cyberworlds
作者: Muhammad Mudassar Qureshi Hanhua Chen Hai Jin Huazhong University of Science and Technology Wuhan China National Engineering Research Center for Big Data Technology and System Cluster and Grid Computing Lab Services Computing Technology and System Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China
Big data applications play a significant role in diverse fields. Distributed Stream Processing Engines (DSPEs) are widely used to support real time applications efficiently. Partitioning algorithms are used to partiti... 详细信息
来源: 评论
认知神经地理学:探索地理环境、人类大脑和行为的相互影响机制(英文)
收藏 引用
science Bulletin 2025年 第8期 1207-1210页
作者: 杨天宇 秦桐 张家鑫 董政 武钰林 万小红 刘瑜 高松 左西年 王桥 董卫华 Advanced Interdisciplinary Institute of Satellite Applications State Key Laboratory of Earth Surface Processes and Hazards Risk Governance Faculty of Geographical ScienceBeijing Normal University Research Group CartoGIS Department of Geography Ghent University School of Physical Sciences University of Chinese Academy of Sciences School of Urban Planning and Design Peking University Shenzhen Graduate School State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Institute of Remote Sensing and Geographical Information System School of Earth and Space Sciences Peking University Geospatial Data Science Lab Department of Geography University of Wisconsin-Madison
‘‘Each place has its own way of supporting its own inhabitants[1].”As the Chinese proverb indicates, geographic environments have great influences on human behavior, and humans are also gradually adapting to these ...
来源: 评论
Binary neural networks: A survey
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Haotong Gong, Ruihao Liu, Xianglong Bai, Xiao Song, Jingkuan Sebe, Nicu State Key Lab of Software Development Environment Beihang University Beijing China Beijing Advanced Innovation Center for Big Data-Based Precision Medicine Beihang University Beijing China Center for Future Media School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Department of Information Engineering and Computer Science University of Trento Trento Italy School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe informat... 详细信息
来源: 评论
Generative VoxelNet: Learning energy-based models for 3D shape synthesis and analysis
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Jianwen Zheng, Zilong Gao, Ruiqi Wang, Wenguan Zhu, Song-Chun Wu, Ying Nian The Cognitive Computing Lab Baidu Research BellevueWA98004 United States The Department of Computer Science University of California Los AngelesCA90095 United States The Department of Statistics University of California Los AngelesCA90095 United States ETH Zürich Zürich8092 Switzerland Tsinghua University and Peking University Beijing China
—3D data that contains rich geometry information of objects and scenes is valuable for understanding 3D physical world. With the recent emergence of large-scale 3D datasets, it becomes increasingly crucial to have a ... 详细信息
来源: 评论
FALCO: a Foundation model of Astronomical Light Curves for time dOmain astronomy
arXiv
收藏 引用
arXiv 2025年
作者: Zuo, Xiaoxiong Tao, Yihan Huang, Yang Kang, Zhixuan Chen, Huaxi Cui, Chenzhou Pan, Jiashu Kong, Xiao Tang, Xiaoyu Han, Henggeng Mu, Haiyang Xu, Yunfei Fan, Dongwei Xue, Guirong Luo, Ali Liu, Jifeng National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China School of Astronomy and Space Science University of Chinese Academy of Sciences Beijing100049 China National Astronomical Data Center Beijing100101 China Key Laboratory of Optical Astronomy National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Research Center for Astronomical Computing Zhejiang Lab Hangzhou311100 China School of Engineering Westlake University Zhejiang Hangzhou310030 China Zhejiang Lab Hangzhou311100 China Institute for Frontiers in Astronomy and Astrophysics Beiing Normal University Beijing102206 China New Cornerstone Science Laboratory NationalAstronomical Observatories Chinese Academy of Sciences Beiing100012 China
Time-domain surveys have advanced astronomical research by revealing diverse variable phenomena, from stellar flares to transient events. The scale and complexity of survey data, along with the demand for rapid classi... 详细信息
来源: 评论
Syntax-enhanced Pre-trained model
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis
MalScan: Fast Market-Wide Mobile Malware Scanning by Social-...
收藏 引用
IEEE International Conference on Automated Software Engineering (ASE)
作者: Yueming Wu Xiaodi Li Deqing Zou Wei Yang Xin Zhang Hai Jin Cluster and Grid Computing Lab Services Computing Technology and System Lab National Engineering Research Center for Big Data Technology and System School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China University of Texas at Dallas Shenzhen Huazhong University of Science and Technology Research Institute School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China
Malware scanning of an app market is expected to be scalable and effective. However, existing approaches use either syntax-based features which can be evaded by transformation attacks or semantic-based features which ... 详细信息
来源: 评论