A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network infrastructures are not fixed. The most common problems faced by MANET are energy efficiency, high energy consumption, low network lifetime as well as high traffic overhead which create an impact on overall network topology. Hence, it is necessary to provide an energy-effective CH election to take steps against such issues. Therefore, this paper proposes a novel model to enhance the network lifetime and energy efficiency by performing a routing strategy in MANET. In this paper, an optimal CH is selected by proposing a novel Fuzzy Marine White Shark optimization (FMWSO) algorithm which is obtained by integrating fuzzy operation with two optimization algorithms namely the marine predator algorithm and white shark optimizer. The proposed approach comprises three diverse stages namely Generation of data, Cluster Generation and CH selection. A novel FMWSO algorithm is proposed in such a way to determine the CH selection in MANET thereby enhancing the network topology, network lifetime and minimizing the overhead rate, and energy consumption. Finally, the performance of the proposed FMWSO approach is compared with various other existing techniques to determine the effectiveness of the system. The proposed FMWSO approach consumes minimum energy of 0.62 mJ which is lower than other approaches.
Scattering medium in light path will cause distortion of the light field,resulting in poor signal-to-noise ratio(SNR)of ghost *** disturbance is usually eliminated by the method of *** deduce the intensity fluctuation...
详细信息
Scattering medium in light path will cause distortion of the light field,resulting in poor signal-to-noise ratio(SNR)of ghost *** disturbance is usually eliminated by the method of *** deduce the intensity fluctuation correlation function of the ghost imaging with the disturbance of the scattering medium,which proves that the ghost image consists of two correlated results:the image of scattering medium and the target *** effect of the scattering medium can be eliminated by subtracting the correlated result between the light field after the scattering medium and the reference light from ghost image,which verifies the theoretical *** research may provide a new idea of ghost imaging in harsh environment.
Accurate drought prediction plays a pivotal role in water resource management and agricultural planning. This study delves into the realm of machine learning algorithms to enhance the accuracy of such predictions. The...
详细信息
The rapid advancement of technology has given rise to medical cyber-physical systems (MCPS), a subset of cyber-physical systems (CPS) specifically tailored for patient care and healthcare providers. MCPS generate subs...
详细信息
Data transmission through a wireless network has faced various signal problems in the past *** orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various...
详细信息
Data transmission through a wireless network has faced various signal problems in the past *** orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among *** main problem faced by 5G wireless OFDM is distortion of transmission signals in the *** transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various *** study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless *** transmit sequence(PTS)helps in the fast transfer of data in wireless *** is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G *** indicates that the proposed system outperforms other existing ***,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm ***,the specified design supports in improving the proposed PAPR reduction architecture.
Spiking neural networks (SNNs) are deeply inspired by biological neural information systems. Compared to convolutional neural networks (CNNs), SNNs are low power consumption because of their spike based information pr...
详细信息
This research is focused on the analysis of how Capsule Networks should be combined with Convolutional Neural Networks (CNNs) for improving the sentiment classification with the target of depression detection based on...
详细信息
Most of the traditional cloud-based applications are insecure and difficult to compute the data integrity with variable hash size on heterogeneous supply chain datasets. Also, cloud storage systems are independent of ...
详细信息
The threat posed by credit card fraud, and by extension, online banking, continues to grow with the convenience brought forth by online banking services. Many financial institutions and customers stand at great risk b...
详细信息
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. U...
详细信息
Millions of people die from lung illness each year as a result of its rise in recent years. CXR imaging is one of the most widely used and reasonably priced diagnostic techniques for the diagnosis of many illnesses. Unfortunately, even for seasoned radiologists, accurately diagnosing sickness from Chest X-Rays (CXR) samples is challenging. To combat the pandemic, a reliable, affordable, and efficient way to diagnose lung disease has become essential. Consequently, a unique optimized Auto Encod-BI Long-Short Term Memory (Bi-LSTM) model is proposed in this research work. Pre-processing, segmentation, feature extraction, and multiple types of lung illness diagnosis are the four main stages of the suggested model. First, Laplacian filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) are used to pre-process the gathered CXR pictures. Next, the Region of Interest (ROI) from the previously processed images are recognized by means of the newly enhanced MobileNetV2. The new Self-Improved Slime Mould Algorithm (SI-SMA) is used to fine-tune the hyper-parameters of MobileNetV2 in order to precisely identify the afflicted locations. Based on the phenomenon of slime mould oscillation, the conventional Slime Mould Algorithm (SMA) model has been modified with the creation of the SI-SMA model. Next, characteristics like the Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) are taken out. Finally, a unique AutoEncod-BiLSTM Framework—which is divided into three categories—is shown to automate the process of identifying illnesses in CXR pictures: pneumonia, COVID-19, and normal. The autoencoder and Bi-LSTM are combined to create the suggested AutoEncod-BiLSTM model. The retrieved features are used to train the AutoEncod-BiLSTM Framework. Moreover, the proposed model enhanced the disease detection efficiency than the existing models and the disease detection accuracy of the proposed model is about 99.1%. Furthermore, the suggested model attains better
暂无评论