咨询与建议

限定检索结果

文献类型

  • 43,308 篇 会议
  • 21,662 篇 期刊文献
  • 19 册 图书

馆藏范围

  • 64,989 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39,138 篇 工学
    • 27,478 篇 计算机科学与技术...
    • 22,632 篇 软件工程
    • 10,201 篇 信息与通信工程
    • 6,694 篇 控制科学与工程
    • 5,014 篇 电气工程
    • 4,830 篇 生物工程
    • 4,394 篇 电子科学与技术(可...
    • 3,845 篇 生物医学工程(可授...
    • 3,011 篇 光学工程
    • 2,925 篇 机械工程
    • 2,317 篇 动力工程及工程热...
    • 2,256 篇 网络空间安全
    • 2,207 篇 化学工程与技术
    • 2,132 篇 仪器科学与技术
    • 1,848 篇 安全科学与工程
    • 1,617 篇 交通运输工程
    • 1,603 篇 材料科学与工程(可...
  • 22,379 篇 理学
    • 10,768 篇 数学
    • 7,119 篇 物理学
    • 5,574 篇 生物学
    • 3,376 篇 统计学(可授理学、...
    • 2,470 篇 化学
    • 2,246 篇 系统科学
  • 11,588 篇 管理学
    • 7,462 篇 管理科学与工程(可...
    • 4,702 篇 图书情报与档案管...
    • 3,100 篇 工商管理
  • 4,087 篇 医学
    • 3,377 篇 临床医学
    • 3,042 篇 基础医学(可授医学...
    • 1,864 篇 公共卫生与预防医...
    • 1,828 篇 药学(可授医学、理...
  • 1,972 篇 法学
  • 1,240 篇 经济学
  • 1,197 篇 农学
  • 645 篇 教育学
  • 283 篇 文学
  • 193 篇 军事学
  • 126 篇 艺术学
  • 6 篇 哲学
  • 2 篇 历史学

主题

  • 2,492 篇 accuracy
  • 2,175 篇 deep learning
  • 1,981 篇 feature extracti...
  • 1,597 篇 machine learning
  • 1,499 篇 training
  • 1,448 篇 computational mo...
  • 1,376 篇 educational inst...
  • 1,330 篇 internet of thin...
  • 1,289 篇 convolutional ne...
  • 1,274 篇 real-time system...
  • 1,170 篇 predictive model...
  • 1,147 篇 support vector m...
  • 1,128 篇 computer science
  • 946 篇 optimization
  • 837 篇 security
  • 802 篇 data models
  • 767 篇 data mining
  • 734 篇 cloud computing
  • 701 篇 neural networks
  • 696 篇 wireless sensor ...

机构

  • 1,056 篇 college of compu...
  • 1,026 篇 department of ph...
  • 1,010 篇 cavendish labora...
  • 979 篇 physikalisches i...
  • 970 篇 oliver lodge lab...
  • 777 篇 college of compu...
  • 638 篇 university of ch...
  • 620 篇 infn sezione di ...
  • 619 篇 infn laboratori ...
  • 595 篇 infn sezione di ...
  • 586 篇 fakultät physik ...
  • 571 篇 infn sezione di ...
  • 551 篇 school of physic...
  • 544 篇 horia hulubei na...
  • 537 篇 department of ph...
  • 536 篇 school of physic...
  • 532 篇 imperial college...
  • 524 篇 nikhef national ...
  • 519 篇 school of physic...
  • 518 篇 h.h. wills physi...

作者

  • 268 篇 barter w.
  • 265 篇 a. gomes
  • 253 篇 beiter a.
  • 249 篇 c. alexa
  • 246 篇 j. m. izen
  • 240 篇 s. chen
  • 238 篇 g. bella
  • 238 篇 j. strandberg
  • 238 篇 bellee v.
  • 237 篇 d. calvet
  • 237 篇 c. amelung
  • 231 篇 g. spigo
  • 230 篇 brundu d.
  • 229 篇 bowcock t.j.v.
  • 229 篇 blake t.
  • 223 篇 f. siegert
  • 221 篇 betancourt c.
  • 220 篇 amato s.
  • 220 篇 bencivenni g.
  • 219 篇 borsato m.

语言

  • 61,212 篇 英文
  • 2,874 篇 其他
  • 931 篇 中文
  • 45 篇 日文
  • 8 篇 德文
  • 8 篇 法文
  • 4 篇 荷兰文
  • 3 篇 斯洛文尼亚文
  • 1 篇 阿拉伯文
  • 1 篇 朝鲜文
检索条件"机构=College of Computer Science and Technology Engineering"
64989 条 记 录,以下是271-280 订阅
排序:
Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification
收藏 引用
Intelligent Automation & Soft Computing 2023年 第2期35卷 2353-2366页
作者: B.Chellapraba D.Manohari K.Periyakaruppan M.S.Kavitha Department of Information Technology Karpagam Institute of TechnologyCoimbatore641032TamilnaduIndia Department of Computer Science and Engineering St.Joseph’s Institute of TechnologyChennai600119India Department of Computer Science&Engineering SNS College of EngineeringCoimbatore641107India Department of Computer Science&Engineering SNS College of TechnologyCoimbatore641035India
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,*** recognition of features from the HS images is important for e... 详细信息
来源: 评论
Disaster Management Based on Biodiversity Conservation Using Remote Sensing Data Analysis Using Machine Learning Model
收藏 引用
Remote Sensing in Earth Systems sciences 2025年 第1期8卷 191-199页
作者: Pokkuluri, Kiran Sree Mounika, Talla Devi, N. Durga Kishore, D. Ratna Balakiruthiga, B. Krishna, B. Murali Department of Computer Science and Engineering Shri Vishnu Engineering College for Women Telangana Bhimavaram India Department of CSE-DS Mallareddy College of Engineering Hyderabad India Department of Computer Science and Engineering Aditya University Andhra Pradesh Surampalem India Dept of Information Technology Lakireddy Balireddy College of Engineering Mylavram Vijayawada India Department of Networking and Communications College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur India Department of Computer Science and Engineering MLR Institute of Technology Hyderabad India
Artificial intelligence (AI) applications in forestry as well as wildlife domains have become more feasible due to the advancements in data science and digital and satellite technologies. However, there is a serious g... 详细信息
来源: 评论
Multisensor Information Fusion for Condition Based Environment Monitoring
收藏 引用
Intelligent Automation & Soft Computing 2023年 第4期36卷 1013-1025页
作者: A.Reyana P.Vijayalakshmi Department of Computer Science and Engineering Hindusthan College of Engineering and TechnologyCoimbatore641050India Department of Electronics and Communication Engineering Hindusthan College of Engineering and TechnologyCoimbatore641050India
Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the *** result,however,is disastrous,causing irreversible damage to the *** loc... 详细信息
来源: 评论
Skin Cancer Detection Using Deep Learning  10
Skin Cancer Detection Using Deep Learning
收藏 引用
10th International Conference on Electrical Energy Systems, ICEES 2024
作者: Mahalakshmi, A. Padmavathy, C. Priya, N. Priyanka, G. Babu, Lidiya Archana, B. Sri Ramakrishna Engineering College Department of Computer Science and Engineering Coimbatore India Hindusthan College of Engineering and Technology Department of Computer Science and Engineering Coimbatore India
Skin cancer is a significant global health concern that requires early detection and accurate diagnosis for effective treatment. Traditionally, dermatologists with specialized training have been responsible for diagno... 详细信息
来源: 评论
A Hybrid Deep Learning Approach for Automatic Melanoma Diagnosis: Integrating Convolutional Neural Networks with Vision Transformers  4
A Hybrid Deep Learning Approach for Automatic Melanoma Diagn...
收藏 引用
4th International Conference on Ubiquitous Computing and Intelligent Information Systems, ICUIS 2024
作者: Priyanka, G. Mahalakshmi, A. Priya, N. Sivaranjani, N. Archana, B. Sri Ramakrishna Engineering College Department of Computer Science and Engineering Coimbatore India Hindusthan college of Engineering and Technology Department of Computer Science and Engineering Coimbatore India
The most lethal type of skin lesion is melanoma. The likelihood of survival for melanoma is significantly increased by early detection. Nevertheless, a number of characteristics, such as diminished contrast between th... 详细信息
来源: 评论
Optimal Deep Belief Network Based Lung Cancer Detection and Survival Rate Prediction
收藏 引用
computer Systems science & engineering 2023年 第4期45卷 939-953页
作者: Sindhuja Manickavasagam Poonkuzhali Sugumaran Department of Information Technology Rajalakshmi Engineering CollegeChennai600125TamilnaduIndia Department of Computer Science and Engineering Rajalakshmi Engineering CollegeChennai600125TamilnaduIndia
The combination of machine learning(ML)approaches in healthcare is a massive advantage designed at curing illness of millions of *** efforts are used by researchers for detecting and providing primary phase insights a... 详细信息
来源: 评论
A Comprehensive Survey on Low-rate DDoS Attacks Detection Based on Deep Learning  5
A Comprehensive Survey on Low-rate DDoS Attacks Detection Ba...
收藏 引用
5th International Conference on computers, Information Processing and Advanced Education, CIPAE 2024
作者: Liu, Zengguang Yin, Xiaochun Liu, Deyong Information Engineering College Shandong Vocational College of Science and Technology Weifang China Computer Science and Engineering College Weifang University of Science & Technology Shouguang China
Low-rate Distributed Denial-of-Service attacks, abbreviated as LDDoS, are experiencing an explosive and continuous growth in recent years. Meanwhile, people worked hard for making great contributions to prevent LDDoS ... 详细信息
来源: 评论
Ensemble-Based Network Attack Prediction in WSN  15
Ensemble-Based Network Attack Prediction in WSN
收藏 引用
15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024
作者: Tejaswini, B. Suruthi, V. Safia Naveed, S. Kcg College of Technology Computer Science and Engineering Chennai India
computer network security and integrity are severely impacted by network attacks. The ability to predict and prevent these attacks is crucial for maintaining a secure network environment. Supervised ML (Machine Learni... 详细信息
来源: 评论
Physiological Data-Based Stress Detection: From Wrist Sensors to Cloud Computing and User Feedback Integration
Physiological Data-Based Stress Detection: From Wrist Sensor...
收藏 引用
2024 International Conference on Smart Systems for Electrical, Electronics, Communication and computer engineering, ICSSEEC 2024
作者: Karpagam, G.R. Harsha Vardhan, V.M. Kabilan, K.K. Pranav, P. Ramesh, Prednya Suvan Sathyendira, B. PSG College of Technology Computer Science & Engineering Coimbatore India
Stress Detection employing physiological data desires to grasp and apprehend physical and physiological signals. Skin conductance, three axes acceleration and temperature data are gathered by the system using various ... 详细信息
来源: 评论
SHADOW: A framework for Systematic Heuristic Analysis and Detection of Observations on the Web
SHADOW: A framework for Systematic Heuristic Analysis and De...
收藏 引用
2024 International Conference on Artificial Intelligence, Metaverse and Cybersecurity, ICAMAC 2024
作者: Rengarajan, Aaditya Senthilkumar, Lohith Padmanabh, Neelesh Ramalingam, Akhil Computer Science and Engineering PSG College of Technology Coimbatore India
The cyberspace contains vast amounts of information that are crucial for cybersecurity professionals to gather threat intelligence, prevent cyberattacks, and secure organizational networks. Unlike earlier and less tar... 详细信息
来源: 评论