Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great ***,due to complex device interactions,time series exhibit diverse abnormal ...
详细信息
Time series anomaly detection is an important task in many applications,and deep learning based time series anomaly detection has made great ***,due to complex device interactions,time series exhibit diverse abnormal signal shapes,subtle anomalies,and imbalanced abnormal instances,which make anomaly detection in time series still a *** and analysis of multivariate time series can help uncover their intrinsic spatio-temporal characteristics,and contribute to the discovery of complex and subtle *** this paper,we propose a novel approach named Multi-scale Convolution Fusion and Memory-augmented Adversarial AutoEncoder(MCFMAAE)for multivariate time series anomaly *** is an encoder-decoder-based framework with four main ***-scale convolution fusion module fuses multi-sensor signals and captures various scales of temporal ***-attention-based encoder adopts the multi-head attention mechanism for sequence modeling to capture global context *** module is introduced to explore the internal structure of normal samples,capturing it into the latent space,and thus remembering the typical ***,the decoder is used to reconstruct the signals,and then a process is coming to calculate the anomaly ***,an additional discriminator is added to the model,which enhances the representation ability of autoencoder and avoids *** on public datasets demonstrate that MCFMAAE improves the performance compared to other state-of-the-art methods,which provides an effective solution for multivariate time series anomaly detection.
The application of the electronic control unit (ECU) motivates dynamic models with high precision to simulate mechatronic systems for various analysis and design tasks like hardware-in-the-loop (HiL) simulation. Unlik...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and *** paper introduces a generative adversarial network model that incorporates an attention mechanis...
详细信息
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and *** paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price ***,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock *** discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock ***,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation *** results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.
In low-light image enhancement,prevailing Retinex-based methods often struggle with precise illumina-tion estimation and brightness *** can result in issues such as halo artifacts,blurred edges,and diminished details ...
详细信息
In low-light image enhancement,prevailing Retinex-based methods often struggle with precise illumina-tion estimation and brightness *** can result in issues such as halo artifacts,blurred edges,and diminished details in bright regions,particularly under non-uniform illumination *** propose an innovative approach that refines low-light images by leveraging an in-depth awareness of local content within the *** introducing multi-scale effective guided filtering,our method surpasses the limitations of traditional isotropic filters,such as Gaussian filters,in handling non-uniform *** dynamically adjusts regularization parameters in response to local image characteristics and significantly integrates edge perception across different *** balanced approach achieves a harmonious blend of smoothing and detail preservation,enabling more accurate illumination ***,we have designed an adaptive gamma correction function that dynamically adjusts the brightness value based on local pixel intensity,further balancing enhancement effects across different brightness levels in the *** results demonstrate the effectiveness of our proposed method for non-uniform illumination images across various *** exhibits superior quality and objective evaluation scores compared to existing *** method effectively addresses potential issues that existing methods encounter when processing non-uniform illumination images,producing enhanced images with precise details and natural,vivid colors.
Graph similarity learning aims to calculate the similarity between pairs of *** unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation st...
详细信息
Graph similarity learning aims to calculate the similarity between pairs of *** unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in *** address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive ***,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the *** enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive ***,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original *** goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each *** representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph ***,the graph similarity score is computed according to different downstream *** conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive ***,the model achieves the best overall performance.
The rapid development of ISAs has brought the issue of software compatibility to the forefront in the embedded *** address this challenge,one of the promising solutions is the adoption of a multiple-ISA processor that...
详细信息
The rapid development of ISAs has brought the issue of software compatibility to the forefront in the embedded *** address this challenge,one of the promising solutions is the adoption of a multiple-ISA processor that supports multiple different ***,due to constraints in cost and performance,the architecture of a multiple-ISA processor must be carefully optimized to meet the specific requirements of embedded *** exploring the RISC-V and ARM Thumb ISAs,this paper proposes RVAM16,which is an optimized multiple-ISA processor microarchitecture for embedded devices based on hardware binary translation *** results show that,when running non-native ARM Thumb programs,RVAM16 achieves a significant speedup of over 2.73×with less area and energy consumption compared to using hardware binary translation alone,reaching more than 70%of the performance of native RISC-V programs.
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, i...
详细信息
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...
详细信息
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of *** experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...
详细信息
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
暂无评论