Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...
详细信息
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate fro...
详细信息
Ramsey oscillations typically exhibit an exponential decay envelope due to environmental noise. However,recent experiments have observed nonmonotonic Ramsey fringes characterized by beating patterns, which deviate from the standard behavior. These beating patterns have primarily been attributed to charge-noise *** this paper, we have experimentally observed Ramsey fringe with beating pattern for transmon qubits, and traced the origin to electric instruments induced flux noise.
Pretrained language models (PLMs) have shown remarkable performance on question answering (QA) tasks, but they usually require fine-tuning (FT) that depends on a substantial quantity of QA pairs. Therefore, improving ...
详细信息
To mitigate the challenges posed by data uncertainty in Full-Self Driving (FSD) systems. This paper proposes a novel feature extraction learning model called Adaptive Region of Interest Optimized Pyramid Network (ARO)...
详细信息
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdi...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors. In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain where Type-2 fuzzy logic better handles uncertainty in medical images, improving the interpretability of image enhancement by managing noise and subtle differences with greater precision than Type-1 fuzzy logic for MRI images often contain ambiguous or low-contrast areas where noise, lighting conditions different and greatly improve accuracy. while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % and Train loss of 0.2118 while the validation accuracy of 0.9953 % validation loss of 0.2264. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967
Cloud computing, as a promising service platform, has gained significant popularity in addressing emerging data privacy issues in applications such as machine learning and data mining. Researchers have proposed the ve...
详细信息
The attack events (such as the Stuxnet and BlackEnergy) that targeted the industrial control system (ICS) have validated its vulnerability to cyber intrusions. The prevention of ICS from cyberattacks is undoubtedly im...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of t...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of the critical issues. Due to its flexible and efficient fine-grained access control feature, Ciphertext-Policy Attribute-Based Encryption(CP-ABE) is suitable for data sharing in IoV. However, there are many flaws in most existing CP-ABE schemes, such as attribute privacy leakage and key misuse. This paper proposes a Traceable and Revocable CP-ABE-based data Sharing with Partially hidden policy for IoV(TRE-DSP). A partially hidden access structure is adopted to hide sensitive user attribute values, and attribute categories are sent along with the ciphertext to effectively avoid privacy exposure. In addition, key tracking and malicious user revocation are introduced with broadcast encryption to prevent key misuse. Since the main computation task is outsourced to the cloud, the burden of the user side is relatively low. Analysis of security and performance demonstrates that TRE-DSP is more secure and practical for data sharing in IoV.
Sea ice has a significant impact on climate change and ship navigation. Therefore, it is essential to create maps charting that accurately depict the geographic distribution of different types of sea ice. To satisfy t...
详细信息
暂无评论