咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 89 篇 会议

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 100 篇 计算机科学与技术...
    • 80 篇 软件工程
    • 33 篇 控制科学与工程
    • 31 篇 生物医学工程(可授...
    • 28 篇 生物工程
    • 22 篇 信息与通信工程
    • 18 篇 电气工程
    • 17 篇 光学工程
    • 16 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 8 篇 动力工程及工程热...
    • 7 篇 网络空间安全
    • 6 篇 化学工程与技术
    • 5 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
  • 91 篇 理学
    • 40 篇 生物学
    • 32 篇 数学
    • 29 篇 物理学
    • 9 篇 化学
    • 9 篇 统计学(可授理学、...
    • 5 篇 系统科学
  • 35 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 17 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 24 篇 医学
    • 21 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 5 篇 农学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 艺术学
  • 2 篇 哲学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 8 篇 computational mo...
  • 8 篇 machine learning
  • 7 篇 decoding
  • 6 篇 training
  • 5 篇 deep learning
  • 5 篇 brain modeling
  • 5 篇 biological syste...
  • 4 篇 object detection
  • 4 篇 reinforcement le...
  • 4 篇 feature extracti...
  • 4 篇 recording
  • 3 篇 three-dimensiona...
  • 3 篇 transformers
  • 3 篇 electroencephalo...
  • 3 篇 spatio-temporal ...
  • 3 篇 neural networks
  • 3 篇 data engineering
  • 3 篇 convolution
  • 3 篇 visualization
  • 3 篇 brain-computer i...

机构

  • 59 篇 college of compu...
  • 41 篇 the state key la...
  • 16 篇 moe frontier sci...
  • 14 篇 state key lab of...
  • 9 篇 college of compu...
  • 9 篇 school of electr...
  • 9 篇 qiushi academy f...
  • 8 篇 state key labora...
  • 8 篇 bengbu universit...
  • 7 篇 center for data ...
  • 7 篇 school of comput...
  • 6 篇 nanhu brain-comp...
  • 6 篇 key lab. of mach...
  • 6 篇 the college of c...
  • 5 篇 national key lab...
  • 5 篇 national enginee...
  • 5 篇 the state key la...
  • 5 篇 software college...
  • 5 篇 college of compu...
  • 4 篇 department of el...

作者

  • 36 篇 pan gang
  • 24 篇 tang huajin
  • 18 篇 zheng qian
  • 15 篇 gang pan
  • 10 篇 shen jiangrong
  • 9 篇 xu qi
  • 9 篇 zheng nenggan
  • 7 篇 wang yueming
  • 7 篇 ma de
  • 6 篇 nenggan zheng
  • 6 篇 li shijian
  • 6 篇 zhao sha
  • 6 篇 jiang xudong
  • 6 篇 qian zheng
  • 6 篇 yan rui
  • 6 篇 qi yu
  • 5 篇 yin jianwei
  • 5 篇 bakas spyridon
  • 5 篇 jiang haiteng
  • 5 篇 li tao

语言

  • 166 篇 英文
  • 44 篇 其他
  • 3 篇 中文
检索条件"机构=College of Computer Science and Technology and The State Key Lab of Brain-Machine Intelligence"
213 条 记 录,以下是51-60 订阅
排序:
CASRL: Collision Avoidance with Spiking Reinforcement Learning Among Dynamic, Decision-Making Agents
CASRL: Collision Avoidance with Spiking Reinforcement Learni...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Chengjun Zhang Ka-Wa Yip Bo Yang Zhiyong Zhang Mengwen Yuan Rui Yan Huajin Tang Zhejiang Lab Research Institute of Intelligent Computing Hangzhou China College of Computer Science and Technology Zhejiang University of Technology Hangzhou China College of Computer Science and Technology Zhejiang University Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China
Developing an efficient collision avoidance policy with Spiking Reinforcement Learning for dynamic, decision-making agents remains challenging. Moreover, the implementation of energy-efficient collision avoidance is i... 详细信息
来源: 评论
Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity
arXiv
收藏 引用
arXiv 2024年
作者: Shen, Jiangrong Ni, Wenyao Xu, Qi Pan, Gang Tang, Huajin The State Key Lab of Brain Machine Intelligence College of Computer Science and Technology Zhejiang University Zhejiang310027 China The Faculty of Electronic Information and Electrical Engineering School of Artificial Intelligence Dalian University of Technology Dalian116024 China
Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC). The brain-inspired models of spiking neural networks (SNN) have drawn ma... 详细信息
来源: 评论
Temporal Spiking Generative Adversarial Networks for Heading Direction Decoding
SSRN
收藏 引用
SSRN 2024年
作者: Shen, Jiangrong Wang, Kejun Gao, Wei Liu, Jian K. Xu, Qi Pan, Gang Chen, Xiaodong Tang, Huajin College of Computer Science and Technology Zhejiang University China State Key Lab of Brain-Machine Intelligence Zhejiang University China College of Biomedical Engineering and Instrument Science Zhejiang University China School of Computing China School of Computer Science and Technology Dalian University of Technology China
The spike-based neuronal responses within the ventral intraparietal area (VIP) exhibit intricate spatial and temporal dynamics in the posterior parietal cortex, presenting decoding challenges such as limited data avai... 详细信息
来源: 评论
Latent Processes Identification From Multi-View Time Series
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Zenan Wang, Haobo Zhao, Junbo Zheng, Nenggan Zhejiang University China The State Key Lab of Brain-Machine Intelligence Zhejiang University China China College of Computer Science and Technology Zhejiang University China
Understanding the dynamics of time series data typically requires identifying the unique latent factors for data generation, a.k.a., latent processes identification. Driven by the independent assumption, existing work... 详细信息
来源: 评论
Extnco: A Fine-Grained Divide-and-Conquer Approach for Extending Nco to Solve Large-Scale Traveling Salesman Problem
SSRN
收藏 引用
SSRN 2023年
作者: Chen, Xinwei Li, Yurui Yang, Yifan Zhang, Li Li, Shijian Pan, Gang College of Computer Science and Technology Zhejiang University Hangzhou310027 China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou310027 China
Large-scale Traveling Salesman Problem (TSP) applications are common and important in practice. Unfortunately, the state-of-the-art heuristic solver LKH suffers from exponential time usage. Neural Combinatorial Optimi... 详细信息
来源: 评论
Cauchy Diffusion: A Heavy-tailed Denoising Diffusion Probabilistic Model for Speech Synthesis  39
Cauchy Diffusion: A Heavy-tailed Denoising Diffusion Probabi...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Lian, Qi Qi, Yu Wang, Yueming The College of Computer Science and Technology Zhejiang University China MOE Frontier Science Center for Brain Science and Brain-machine Integration Zhejiang University China Affiliated Mental Health Center Hangzhou Seventh People's Hospital Zhejiang University China State Key Lab of Brain-Machine Intelligence Zhejiang University China
Denoising diffusion probabilistic models (DDPMs) have gained popularity in devising neural vocoders and obtained outstanding performance. However, existing DDPM-based neural vocoders struggle to handle the prosody div... 详细信息
来源: 评论
DeCorrNet: Enhancing Neural Decoding Performance by Eliminating Correlations in Noise  39
DeCorrNet: Enhancing Neural Decoding Performance by Eliminat...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Tan, Xianhan Qi, Yu Wang, Yueming The College of Computer Science and Technology Zhejiang University China MOE Frontier Science Center for Brain Science and Brain-machine Integration Zhejiang University China Affiliated Mental Health Center Hangzhou Seventh People’s Hospital Zhejiang University China State Key Lab of Brain-Machine Intelligence Zhejiang University China
Neural decoding, which transforms neural signals into motor commands, plays a key role in brain-computer interfaces (BCIs). Existing neural decoding approaches mainly rely on the assumption of independent noises, whic...
来源: 评论
Off-OAB: Off-Policy Policy Gradient Method with Optimal Action-Dependent Baseline
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Wenjia Zheng, Qian Yang, Long Yin, Yilong Pan, Gang The School of Software Shandong University Jinan250000 China The School of Artificial Intelligence Peking University China The State Key Lab of Brain-Machine Intelligence College of Computer Science and Technology Zhejiang University Hangzhou310000 China
Policy-based methods have achieved remarkable success in solving challenging reinforcement learning problems. Among these methods, off-policy policy gradient methods are particularly important due to that they can ben... 详细信息
来源: 评论
MITIGATING REWARD OVER-OPTIMIZATION IN RLHF VIA BEHAVIOR-SUPPORTED REGULARIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Dai, Juntao Chen, Taiye Yang, Yaodong Zheng, Qian Pan, Gang College of Computer Science and Technology Zhejiang University China The State Key Lab of Brain-Machine Intelligence Zhejiang University China LLM Safety Centre Beijing Academy of Artificial Intelligence China Center for AI Safety and Governance Peking University China
Reinforcement learning from human feedback (RLHF) is an effective method for aligning large language models (LLMs) with human values. However, reward over-optimization remains an open challenge leading to discrepancie... 详细信息
来源: 评论
Safe Reinforcement Learning using Finite-Horizon Gradient-based Estimation
arXiv
收藏 引用
arXiv 2024年
作者: Dai, Juntao Yang, Yaodong Zheng, Qian Pan, Gang College of Computer Science and Technology Zhejiang University Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China Center for AI Safety and Governance Peking University Beijing China
A key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint condition for the next policy, which is crucial for guiding the optimization of safe policy updates. However, the existing Advan... 详细信息
来源: 评论