The Coordinate Descent Method for K-means(CDKM)is an improved algorithm of *** identifies better locally optimal solutions than the original K-means *** is,it achieves solutions that yield smaller objective function v...
详细信息
The Coordinate Descent Method for K-means(CDKM)is an improved algorithm of *** identifies better locally optimal solutions than the original K-means *** is,it achieves solutions that yield smaller objective function values than the K-means ***,CDKM is sensitive to initialization,which makes the K-means objective function values not small *** selecting suitable initial centers is not always possible,this paper proposes a novel algorithm by modifying the process of *** proposed algorithm first obtains the partition matrix by CDKM and then optimizes the partition matrix by designing the split-merge criterion to reduce the objective function value *** split-merge criterion can minimize the objective function value as much as possible while ensuring that the number of clusters remains *** algorithm avoids the distance calculation in the traditional K-means algorithm because all the operations are completed only using the partition *** on ten UCI datasets show that the solution accuracy of the proposed algorithm,measured by the E value,is improved by 11.29%compared with CDKM and retains its efficiency advantage for the high dimensional *** proposed algorithm can find a better locally optimal solution in comparison to other tested K-means improved algorithms in less run time.
Recommendation has been widely used in business scenarios to provide users with personalized and accurate item lists by efficiently analyzing complex user-item ***,existing recommendation methods have significant shor...
详细信息
Recommendation has been widely used in business scenarios to provide users with personalized and accurate item lists by efficiently analyzing complex user-item ***,existing recommendation methods have significant shortcomings in capturing the dynamic preference changes of users and discovering their true potential *** address these problems,a novel framework named Intent-Aware Graph-Level Embedding Learning(IaGEL)is proposed for *** this framework,the potential user interest is explored by capturing the co-occurrence of items in different periods,and then user interest is further improved based on an adaptive aggregation algorithm,forming generic intents and specific *** addition,for better representing the intents,graph-level embedding learning is designed based on the mutual information comparison among positive intents and negative ***,an intent-based recommendation strategy is designed to further mine the dynamic changes in user *** on three public and industrial datasets demonstrate the effectiveness of the proposed IaGEL in the task of recommendation.
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,a...
详细信息
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised *** this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the ***,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd *** addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density *** experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
Dear Editor,This letter presents a distributed adaptive second-order latent factor(DAS) model for addressing the issue of high-dimensional and incomplete data representation. Compared with first-order optimizers, a se...
详细信息
Dear Editor,This letter presents a distributed adaptive second-order latent factor(DAS) model for addressing the issue of high-dimensional and incomplete data representation. Compared with first-order optimizers, a second-order optimizer has stronger ability in approaching a better solution when dealing with the non-convex optimization problems, thus obtaining better performance in extracting the latent factors(LFs) well representing the known information from high-dimensional and incomplete data.
The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited di...
详细信息
The use of generative adversarial network(GAN)-based models for the conditional generation of image semantic segmentation has shown promising results in recent ***,there are still some limitations,including limited diversity of image style,distortion of detailed texture,unbalanced color tone,and lengthy training *** address these issues,we propose an asymmetric pre-training and fine-tuning(APF)-GAN model.
Genetic algorithm is an optimization method based on biological evolution and genetics, which has been widely used in computer mathematical modeling. This paper studies how to improve genetic algorithm to improve its ...
详细信息
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...
详细信息
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of *** experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target ***,a challenging issue is how to deploy these mob...
详细信息
Working as aerial base stations,mobile robotic agents can be formed as a wireless robotic network to provide network services for on-ground mobile devices in a target ***,a challenging issue is how to deploy these mobile robotic agents to provide network services with good quality for more users,while considering the mobility of on-ground *** this paper,to solve this issue,we decouple the coverage problem into the vertical dimension and the horizontal dimension without any loss of optimization and introduce the network coverage model with maximum coverage ***,we propose a hybrid deployment algorithm based on the improved quick artificial bee *** algorithm is composed of a centralized deployment algorithm and a distributed *** proposed deployment algorithm deploy a given number of mobile robotic agents to provide network services for the on-ground devices that are independent and identically *** results have demonstrated that the proposed algorithm deploys agents appropriately to cover more ground area and provide better coverage uniformity.
In recent years,live streaming has become a popular application,which uses TCP as its primary transport *** UDP Internet Connections(QUIC)protocol opens up new opportunities for live ***,how to leverage QUIC to transm...
详细信息
In recent years,live streaming has become a popular application,which uses TCP as its primary transport *** UDP Internet Connections(QUIC)protocol opens up new opportunities for live ***,how to leverage QUIC to transmit live videos has not been studied *** paper first investigates the achievable quality of experience(QoE)of streaming live videos over TCP,QUIC,and their multipath extensions Multipath TCP(MPTCP)and Multipath QUIC(MPQUIC).We observe that MPQUIC achieves the best performance with bandwidth aggregation and transmission ***,network fluctuations may cause heterogeneous paths,high path loss,and band-width degradation,resulting in significant QoE *** by the above observations,we investigate the multipath packet scheduling problem in live streaming and design 4D-MAP,a multipath adaptive packet scheduling scheme over ***,a linear upper confidence bound(LinUCB)-based online learning algorithm,along with four novel scheduling mechanisms,i.e.,Dispatch,Duplicate,Discard,and Decompensate,is proposed to conquer the above problems.4D-MAP has been evaluated in both controlled emulation and real-world networks to make comparison with the state-of-the-art multipath transmission *** results reveal that 4D-MAP outperforms others in terms of improving the QoE of live streaming.
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a ***,this kind ofmethod is dependent on a...
详细信息
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a ***,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video *** address this issue,this paper proposes a video captioning method by semantic topic-guided ***,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the ***,the semantic topics of video data are extracted using the visual labels retrieved from similar video *** the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video *** this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted ***,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text *** experimental results demonstrate that the proposed method outperforms several state-of-art ***,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset
暂无评论