The emergence of multimodal disease risk prediction signifies a pivotal shift towards healthcare by integrating information from various sources and enhancing the reliability of predicting susceptibility to specific d...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learni...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/*** the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big *** deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning *** ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble *** deep learning has been successfully used in several areas,such as bioinformatics,finance,and health *** this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug *** cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also ***,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and ***,future directions and opportunities for enhancing healthcare model performance are discussed.
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
Quantum communication is rapidly developing and is gradually being commercialized due to its technological maturity. Establishing dense communication links among multiple users in a scalable and efficient way is of gr...
详细信息
Quantum communication is rapidly developing and is gradually being commercialized due to its technological maturity. Establishing dense communication links among multiple users in a scalable and efficient way is of great significance for realizing a large-scale quantum communication network. Here, we propose a novel scheme to construct a fully connected polarizationentangled network, utilizing the engineering of spontaneous four-wave mixings(SFWMs) and a path-polarization converter. It does not require active optical switches which limit the communication speed, or trusted nodes which lead to potential security risks. The required frequency channels in the network grow linearly with the number of users. We experimentally demonstrate a six-user fully connected network with on-chip SFWM processes motivated by four pumps. Each user in the network receives a frequency channel, and all fifteen connections between the users are implemented simultaneously. Our work opens up a promising scheme to efficiently construct fully connected large-scale networks.
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driv...
详细信息
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and *** privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user *** address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving *** model analyzes data based on user demands and interactions with service providers or neighboring *** aims to minimize privacy risks while ensuring service continuity and *** SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy *** results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
Frequency conversion is pivotal in nonlinear optics and quantum optics for manipulating and translating light signals across different wavelength *** frequency conversion between two light beams with a small frequency...
详细信息
Frequency conversion is pivotal in nonlinear optics and quantum optics for manipulating and translating light signals across different wavelength *** frequency conversion between two light beams with a small frequency interval is a central *** this work,we design a pair of coupled silicon microrings wherein coupled-induced modesplitting exists to achieve a small frequency shift by the process of four-wave mixing Bragg *** an example,the signal can be up or down converted to the idler which is 15.5 GHz spaced when two pumps align with another pair of split *** results unveil the potential of coupled microring resonators for small interval frequency conversion in a high-fidelity,all-optical,and signal processing quantum frequency interface.
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
The detection of skin cancer holds paramount importance worldwide due to its impact on global health. While deep convolutional neural networks (DCNNs) have shown potential in this domain, current approaches often stru...
详细信息
Qatar is a small country with limited land resources for agriculture and thus it is essential to ensure food security by utilizing available resources efficiently. PPS provides a way to achieve this by using data from...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly foc...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly focuses on gray-scale image processing, making it challenging to recognize color images. Additionally, the high power consumption of optoelectronic synapses, compared to the 10 fJ energy consumption of biological synapses, limits their broader application. To address these challenges, an energy-efficient NVS capable of color target recognition in a noisy environment was developed,utilizing a MoS2optoelectronic synapse with wavelength sensitivity. Benefiting from the distinct photon capture capabilities of 450, 535, and 650 nm light, the optoelectronic synapse exhibits wavelength-dependent synaptic plasticity, including excitatory postsynaptic current(EPSC), paired-pulse facilitation(PPF), and long-term plasticity(LTP). These properties can effectively mimic the visual memory and color discrimination functions of the human vision system. Results demonstrate that the NVS, based on MoS2optoelectronic synapses, can eliminate the color noise at the sensor level, increasing color image recognition accuracy from 50% to 90%. Importantly, the optoelectronic synapse operates at a low voltage spike of0.0005 V, consuming only 0.075 fJ per spike, surpassing the energy efficiency of both existing optoelectronic and biological synapses. This ultra-low power, color-sensitive device eliminates the need for color filters and offers great promise for future deployment in filter-free NVS.
暂无评论