The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex *** technologies,such as augmented reality-driven scene integration,robotic...
详细信息
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex *** technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene *** paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an *** methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet ***,we use an annotation tool to accurately label the segmented *** labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob *** the classification stage,a convolution neural network(CNN)is *** comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in *** experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been *** analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.
In recent years, emerging nations have shifted their focus to renewable energy sources for electricity production. This shift has happened in both industrialised and underdeveloped countries. The percentage of electri...
详细信息
Electric grids with buses that are mapped to geographic latitude and longitude are useful for a growing number of applications, such as data visualization, geomagnetically induced current calculations, and multi-energ...
详细信息
Abstract: Feature selection poses a challenge in high-dimensional datasets, where the number of features exceeds the number of observations, as seen in microarray, gene expression, and medical datasets. There is not a...
详细信息
This article introduces a novel model for low-quality pedestrian trajectory prediction, the social nonstationary transformers (NSTransformers), that merges the strengths of NSTransformers and spatiotemporal graph tran...
详细信息
Advancements in unmanned aerial vehicle (UAV) technology, along with indoor hybrid LiFi-WiFi networks (HLWN), promise the development of cost-effective, energy-efficient, adaptable, reliable, rapid, and on-demand HLWN...
详细信息
Social media is a digital environment where users openly share their opinions and engage in debates and discussions on various topics. Social media has amassed an enormous quantity of accessible data due to its consta...
详细信息
Attention deficit hyperactivity disorder (ADHD) is a type of neurodevelopmental disease affecting the mental health of children and adults. Individuals with ADHD show various symptoms such as inattention, hyperactivit...
详细信息
Attention deficit hyperactivity disorder (ADHD) is a type of neurodevelopmental disease affecting the mental health of children and adults. Individuals with ADHD show various symptoms such as inattention, hyperactivity, and impulsivity. Early diagnosis of ADHD helps to alter neural connections and refine symptoms. The clinical practice to diagnose ADHD is through subjective measures and does not significantly capture the underlying structural and functional mechanisms of the brain. Therefore, it is crucial to explore other approaches such as Artificial Intelligence (AI) to improve the accuracy and efficacy of ADHD diagnosis. Consequently, in this article we systematically investigate various Machine Learning (ML) and Deep Learning (DL) approaches as well as different diagnostic tools or modalities employed for the identification of ADHD. Particularly, a Systematic Literature Review (SLR) is conducted to review and analyze 98 selected studies published from 2021 to 2024. Subsequently, the selected studies are grouped into five categories based on the modalities utilized in these studies: physiological signals (37), magnetic resonance imaging (31), questionnaires (11), motion data (8), and others (11). We also analyze AI models which indicates that 45 studies utilized ML models, 33 studies employed DL models, and 20 studies used both. However, there are still some gaps in current research such as a lack of publicly available datasets except MRI and EEG. Although datasets for MEG and actigraphy exist, but they are underexplored and have been utilized in only a few studies. While DL models like CNNs and ANNs have been increasingly applied in recent years for ADHD diagnosis, there is a shortage of advanced DL models, including transfer learning approaches like ResNet and VGG. Additionally, there is a lack of interpretability in AI models, particularly DL models. Furthermore, most studies focus on individual modalities for ADHD diagnosis, and despite many studies showing
We explore the reasons for the poorer feature extraction ability of vanilla convolution and discover that there mainly exist three key factors that restrict its representation capability, i.e., regular sampling, stati...
详细信息
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot ***,recognizing actions from such videos ...
详细信息
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot ***,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera *** research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)*** first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale *** YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further *** joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are *** features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity ***-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing *** particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos.
暂无评论