Integration of inverter-based resources (IBRs) which lack the intrinsic characteristics such as the inertial response of the traditional synchronous-generator (SG)-based sources presents a new challenge in the form of...
详细信息
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ...
详细信息
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware *** study provides a new approach for RaaS attack detection which uses an ensemble of deep learning *** this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is *** the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are ***,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested *** proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%*** empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual *** expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats.
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
Diabetic Retinopathy (DR) is a primary cause of blindness, necessitating early detection and diagnosis. This paper focuses on referable DR classification to enhance the applicability of the proposed method in clinical...
详细信息
Internet’s remarkable surge, ubiquitous accessibility, and serviceability have increased users’ dependency on web services for fast search and recovery of wide sources of information. Search engine optimization (SEO...
详细信息
Internet’s remarkable surge, ubiquitous accessibility, and serviceability have increased users’ dependency on web services for fast search and recovery of wide sources of information. Search engine optimization (SEO) has become paramount in healthcare industries, which helps patients enhance and understand their health status based on their records. In the context of healthcare, it is more significant to improve search results from specific keywords related to clinical conditions, treatments, and healthcare services. So, this research work proposes a Graph Convolutional Network (GCN)-based Search Engine Optimization (SEO) algorithm for healthcare applications. The algorithm utilizes two distinct datasets: MIMIC-III Clinical Database and Consumer Health Search Queries to optimize search engine rankings for health related queries. Following data acquisition, data pre-processing is performed for better enrichment of analysis. The preprocessing steps involve data cleaning, data integration, feature engineering, and knowledge graph construction procedures to remove noisy data, integrate medical data with user search behavior, compute significant features, and construct knowledge graphs, correspondingly. The relation between the data entities is examined within constructed graph through link analysis. The pre-processed data including medical knowledge weights, content relevance scores, and user interaction signals are processed further on GCN model with Adam-tuned weights and bias for ranking healthcare data based on relevance score in response to user query using cosine similarity. The search relevance estimation indicators namely recall, precision, f1-score, and normalized discounted cumulative gain (NDCG) are computed to measure search optimization performance. The proposed GCN-SEO approach benchmarked its effectiveness over existing methods in optimizing web searches related to healthcare with a high performance rate of 95.75% accuracy and 48.25 s dwell time. This sho
Human interaction recognition is an essential task in video *** current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other *** thi...
详细信息
Human interaction recognition is an essential task in video *** current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other *** this paper,we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the *** address this problem,we propose an Interactive Relation Embedding Network(IRE-Net)to simultaneously identify the subjects involved in the interaction and recognize their interaction *** a new problem,we also build a new dataset with annotations and metrics for performance *** results on this datasesthow significant improvements of the proposed method when compared with current methodsdeveloped for human interaction recognition and group activity recognition.
This paper presents NDAS (Noise-Decomposed Abnormal Segmentation), an innovative framework for robust medical image retrieval and segmentation. By explicitly decomposing noise and abnormal features, NDAS enhances retr...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-...
详细信息
This study introduces CLIP-Flow,a novel network for generating images from a given image or *** effectively utilize the rich semantics contained in both modalities,we designed a semantics-guided methodology for image-and text-to-image *** particular,we adopted Contrastive Language-Image Pretraining(CLIP)as an encoder to extract semantics and StyleGAN as a decoder to generate images from such ***,to bridge the embedding space of CLIP and latent space of StyleGAN,real NVP is employed and modified with activation normalization and invertible *** the images and text in CLIP share the same representation space,text prompts can be fed directly into CLIP-Flow to achieve text-to-image *** conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis *** addition,we tested on the public dataset Multi-Modal CelebA-HQ,for text-to-image *** validated that our approach can generate high-quality text-matching images,and is comparable with state-of-the-art methods,both qualitatively and quantitatively.
Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanism...
详细信息
Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanisms with low computation cost, increased integrity, and surveillance. The proposal of a mechanism that utilizes the features of authenticity measures using the Destination Sequence Distance Vector (DSDV) routing protocol which applies to the multi-WSN (Wireless Sensor Network) of IoT devices in CPS which is developed for the Device-to-Device (D2D) authentication developed from the local-chain and public chain respectively combined with the Software Defined Networking (SDN) control and monitoring system using switches and controllers that will route the packets through the network, identify any false nodes, take preventive measures against them and preventing them for any future problems. Next, the system is powered by Blockchain cryptographic features by utilizing the TrustChain features to create a private, secure, and temper-free ledger of the transactions performed inside the network. Results are achieved in the legitimate devices connecting to the network, transferring their packets to their destination under supervision, reporting whenever a false node is causing hurdles, and recording the transactions for temper-proof records. Evaluation results based on 1000+ transactions illustrate that the proposed mechanism not only outshines most aspects of Cyber-Physical systems but also consumes less computation power with a low latency of 0.1 seconds only.
Early identification of skin cancer is mandatory to minimize the worldwide death rate as this disease is covering more than 30% of mortality rates in young and adults. Researchers are in the move of proposing advanced...
详细信息
暂无评论