The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context ...
详细信息
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context of IoT fog *** suggested framework,called"BlocFogSec",secures key management and data sharing through blockchain consensus and smart *** existing solutions,BlocFogSec utilizes two types of smart contracts for secure key exchange and data sharing,while employing a consensus protocol to validate transactions and maintain blockchain *** process and store data effectively at the network edge,the framework makes use of fog computing,notably reducing latency and raising *** successfully blocks unauthorized access and data breaches by restricting transactions to authorized *** addition,the framework uses a consensus protocol to validate and add transactions to the blockchain,guaranteeing data accuracy and *** compare BlocFogSec's performance to that of other models,a number of simulations are *** simulation results indicate that BlocFogSec consistently outperforms existing models,such as Security Services for Fog Computing(SSFC)and Blockchain-based Key Management Scheme(BKMS),in terms of throughput(up to 5135 bytes per second),latency(as low as 7 ms),and resource utilization(70%to 92%).The evaluation also takes into account attack defending accuracy(up to 100%),precision(up to 100%),and recall(up to 99.6%),demonstrating BlocFogSec's effectiveness in identifying and preventing potential attacks.
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle **...
详细信息
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ***,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of *** recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a *** this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is *** Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as ***,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)***,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading ***,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms ...
详细信息
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms and demand advanced medical imaging process, thorough clinical assessments, and innovative procedures for accurate diagnosis. The shortage of qualified radiologists further makes the problem more complex to deal with. COVID-19 in particular has resulted in a remarkable number of fatalities around the world. Children below the age of 5 and individuals over 65 are more likely to be affected by lung disorders. It is very hard to diagnose and manage COVID-19 absolutely, but it can be identified earlier by employing computer-aided diagnosis (CAD) technologies to make timely diagnosis. Currently, radiologists adopt technologies, which are driven by artificial intelligence. By using them, medical imaging data, such as chest X-rays and CT scans, can be investigated to identify patterns to diagnose the severity of the virus. This expedites the diagnostic process and enhances accuracy, facilitating more timely and precise medical interventions. The efficiency of artificial intelligence in processing large datasets can directly help healthcare professionals in making diagnosis quicker and more accurate. The objective of the work in this paper is to design and implement deep learning model classifiers, which will effectively categorize the patterns found in the X-rays and CT scans. Methods: Three techniques for categorization are exploited to propose an entirely new hybrid convolutional neural network (CNN) model in this context. MRI and CT image categorization in the first classification method employ Fully Connected (FC) layers. The weights are calculated and tuned for training the algorithm over multiple periods to deliver the maximum precision for classification. The most accurate MRI and CT image characteristics are studied, and deep learning model classifiers
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, a...
详细信息
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, and problem-solving abilities. As a result, stress detection and modeling have become important areas of study in both psychology and computer science. This study links the fields of psychology and machine learning to deal with the urgent requirement of accurate stress detection methodologies and highlights sleep patterns as a key indicator for stress detection, discussing a novel approach to understand and determine stress levels. Psychologists use affective states to measure stress, which refers to a sense of feeling an underlying emotional state. However, most stress classification work has been limited to user-dependent models, which new users cannot use without additional training. This can be a significant time burden for new users trying to predict their affective states. Therefore, it is critical to address basic mental health issues in children and adults to prevent them from developing more complex problems on account of undergoing stress. The medical field processes vast amounts of medical data;the machine learning algorithms sift through patterns that might escape the human eye. The machine learning algorithms act as detectives, able to spot correlations and bring out a sense of complex information. The machine learning algorithms reveal fine correlations and patterns, aiding in more precise and prompt diagnoses particularly to focus fundamental mental health issues in individuals of all ages. This research work deploys an enhanced Multilayer Perceptron (MLP), exhibiting an extensive feature analysis for processing medical datasets, resulting in improved effectiveness in predicting stress levels. This helps us to diagnose issues more accurately and swiftly which improves the patient outcomes. The proposed and enhanced MLP model undergoes stri
Accurate prediction of above ground biomass (AGB) is critical for monitoring forest health and carbon cycling. It is crucial for understanding and managing forest ecosystems. In this paper, we propose an enhanced fram...
详细信息
Social media is nowadays a vital platform where people can share their feelings about any incident, product, or any issue. Twitter is one of those platforms which are very popular. If we must make use of this to extra...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking ad...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web ***,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client ***,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for *** this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training *** a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning *** is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous ***,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central *** has actually been measured in various setups using the MNIST *** results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data *** addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network ***,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promi...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and ***,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial *** examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong ***,the security of AI models for the digital communication signals identification is the premise of its efficient and credible *** this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial *** we present more detailed adversarial indicators to evaluate attack and defense ***,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
Several studies have exposed the vulnerability of Natural Language Processing (NLP) models to adversarial attacks, which are inputs crafted by attackers to deceive NLP models. Adversarial robustness measures the perfo...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
暂无评论