Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage c...
详细信息
Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfl*** massive amount of data generated by social media platforms such as Twitter opens the door toflood *** of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue ***,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningfl*** learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction *** the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood *** this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter *** suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data *** ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable *** addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from ***,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict thefl***,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction *** memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm *** ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly.
The perception of offensive language varies based on cultural, social, and individual perspectives. With the spread of social media, there has been an increase in offensive content online, necessitating advanced solut...
详细信息
Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to t...
详细信息
Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end, we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obligation as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the outputs resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the probability that the post-condition is satisfied on the premise that the inputs fulfill the pre-condition. To tackle these problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experiments to demonstrate its feasibility and efficiency.
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this R...
详细信息
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this RS research is limited and needs to be *** previous method did notfind any user reviews within a time,so it gets poor accuracy and doesn’tfilter the irre-levant comments effi*** Recursive Neural Network-based Trust Recom-mender System(RNN-TRS)is proposed to overcome this method’s *** it is efficient to analyse the trust comment and remove the irrelevant sentence ***first step is to collect the data based on the transactional reviews of social *** second step is pre-processing using Imbalanced Col-laborative Filtering(ICF)to remove the null values from the *** the features from the pre-processing step using the Maximum Support Grade Scale(MSGS)to extract the maximum number of scaling features in the dataset and grade the weights(length,count,etc.).In the Extracting features for Training and testing method before that in the feature weights evaluating the softmax acti-vation function for calculating the average weights of the ***,In the classification method,the Recursive Neural Network-based Trust Recommender System(RNN-TRS)for User reviews based on the Positive and negative scores is analysed by the *** simulation results improve the predicting accuracy and reduce time complexity better than previous methods.
Bot detection is considered a crucial security issue that is extensively analysed in various existingapproaches. Machine Learning is an efficient way of botnet attack detection. Bot detectionis the major issue faced b...
详细信息
Bot detection is considered a crucial security issue that is extensively analysed in various existingapproaches. Machine Learning is an efficient way of botnet attack detection. Bot detectionis the major issue faced by the existing system. This research concentrates on adopting a graphbasedfeature learning process to reduce feature dimensionality. The incoming samples arecorrectly classified and optimised using an Adaboost classifier with an improved grey wolfoptimiser (g-AGWO). The proposed IGWO optimisation approach is adopted to fulfil the multiconstraintissues related to bot detection and provide better local and global solutions (to satisfyexploration and exploitation). The extensive results show that the proposed g-AGWO model outperformsexisting approaches to reduce feature dimensionality, under-fitting/over-fitting andexecution time. The error rate prediction shows the feasibility of the given model to work over thechallenging environment. This model also works efficiently towards the unseen data to achievebetter generalization.
Weather variability significantly impacts crop yield, posing challenges for large-scale agricultural operations. This study introduces a deep learning-based approach to enhance crop yield prediction accuracy. A Multi-...
详细信息
In various fields,different networks are used,most of the time not of a single kind;but rather a mix of at least two *** kinds of networks are called bridge networks which are utilized in interconnection networks of P...
详细信息
In various fields,different networks are used,most of the time not of a single kind;but rather a mix of at least two *** kinds of networks are called bridge networks which are utilized in interconnection networks of PC,portable networks,spine of internet,networks engaged with advanced mechanics,power generation interconnection,bio-informatics and substance intensify *** number that can be entirely calculated by a graph is called graph *** mathematical graph invariants have been portrayed and utilized for connection investigation during the latest twenty ***,no trustworthy evaluation has been embraced to pick,how much these invariants are associated with a network graph or subatomic *** this paper,it will discuss three unmistakable varieties of bridge networks with an incredible capacity of assumption in the field of computerscience,chemistry,physics,drug industry,informatics and arithmetic in setting with physical and manufactured developments and networks,since Contraharmonic-quadratic invariants(CQIs)are recently presented and have different figure qualities for different varieties of bridge graphs or *** study settled the geography of bridge graphs/networks of three novel sorts with two kinds of CQI and Quadratic-Contraharmonic Indices(QCIs).The deduced results can be used for the modeling of the above-mentioned networks.
Background: The synthesis of reversible logic has gained prominence as a crucial research area, particularly in the context of post-CMOS computing devices, notably quantum computing. Objective: To implement the bitoni...
详细信息
The inefficiency of Consensus protocols is a significant impediment to blockchain and IoT convergence *** solve the problems like inefficiency and poor dynamics of the Practical Byzantine Fault Tolerance(PBFT)in IoT s...
详细信息
The inefficiency of Consensus protocols is a significant impediment to blockchain and IoT convergence *** solve the problems like inefficiency and poor dynamics of the Practical Byzantine Fault Tolerance(PBFT)in IoT scenarios,a hierarchical consensus protocol called DCBFT is *** all,we propose an improved k-sums algorithm to build a two-level consensus cluster,achieving an hierarchical management for IoT ***,A scalable two-level consensus protocol is proposed,which uses a multi-primary node mechanism to solve the single-point-of-failure *** addition,a data synchronization process is introduced to ensure the consistency of block data after view ***,A dynamic reputation evaluation model is introduced to update the nodes’reputation values and complete the rotation of consensus nodes at the end of each consensus *** experimental results show that DCBFT has a more robust dynamic and higher consensus ***,After running for some time,the performance of DCBFT shows some improvement.
Sintering is a crucial upstream process in the steelmaking process, and accurately predicting the burning through point (BTP) is vital for the yield and quality of sintered ore. The rise of artificial intelligence and...
详细信息
暂无评论