Understanding human personality traits is significant as it helps in decision making related to consumers’ behavior, career counselling, team building and top candidates’ selection for recruitment. Among various tra...
详细信息
Image processing,agricultural production,andfield monitoring are essential studies in the researchfi*** diseases have an impact on agricultural production and *** disease detection at a preliminary phase reduces economi...
详细信息
Image processing,agricultural production,andfield monitoring are essential studies in the researchfi*** diseases have an impact on agricultural production and *** disease detection at a preliminary phase reduces economic losses and improves the quality of *** identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and *** atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural *** paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem *** of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing *** community-based cumulative algorithm was used to classify the pests in the existing *** proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in *** Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification *** Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are *** are created as suitable classifiers to categorize any dataset in Big Data *** proposed Entropy-ELM-WOA is more capable compared to the existing systems.
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
Most existing multi-objective evolutionary algorithms (MOEAs) have difficulties in approximating the whole Pareto Fronts with complicated geometries. However, the decision maker (DM) may only be interested in a small ...
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon ...
详细信息
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon caused by the imprecise compensation of the time-varying reference input, a novel time-varying event-triggered piecewise continuous control law and a triggering mechanism with a time-varying triggering function are developed. Second, an explicit integral input-to-state stable Lyapunov function is constructed for the time-varying closed-loop system regarding the sampling error as the external input. The origin of the closed-loop system is shown to be uniformly globally asymptotically stable for any global exponential decaying threshold signals, which in turn rules out the Zeno behavior. Moreover, infinitely fast sampling can be avoided by appropriately tuning the exponential convergence rate of the threshold signal. A numerical simulation example is provided to illustrate the proposed control approach.
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and rat...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the *** traditional systems consume maximum time and create complexity while analyzing a large volume of customer ***,in this work optimized recommendation system is developed for analyzing customer reviews with minimum ***,Amazon Product Kaggle dataset information is utilized for investigating the customer *** collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and *** effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering *** the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.
Cloud detection (CD) in remote sensing images is commonly used in satellite imaging and laser communication. UNet-based methods with multi-level feature caching and interaction learning, are popular for superior CD pe...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various re...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on *** IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the *** was handled as a resource-rich solution to aforementioned *** high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user ***,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud *** presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud *** achieves the makespan by performing optimum TS procedures with various aspects of incoming *** designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim *** experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.
The Metaverse can leverage intelligent traffic management technology to simulate the Cellular Vehicle-to-Everything (C-V2X) environment, integrating closely with the Internet of Vehicles due to its advanced connectivi...
详细信息
In complex electromagnetic scenarios where multiple deceptive jamming signals are simultaneously aliased in the time frequency domain, conventional single-channel electronic detection systems struggle to effectively s...
详细信息
暂无评论