咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 38 篇 计算机科学与技术...
    • 34 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 8 篇 电气工程
    • 4 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
  • 48 篇 医学
    • 24 篇 基础医学(可授医学...
    • 17 篇 特种医学
    • 15 篇 临床医学
    • 3 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 1 篇 医学技术(可授医学...
  • 34 篇 理学
    • 22 篇 生物学
    • 9 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 数学
    • 1 篇 系统科学
  • 7 篇 农学
    • 2 篇 作物学
  • 3 篇 管理学
    • 2 篇 公共管理
    • 1 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 27 篇 deep learning
  • 10 篇 cranioplasty
  • 9 篇 cranial implant ...
  • 7 篇 augmented realit...
  • 6 篇 segmentation
  • 5 篇 skull reconstruc...
  • 4 篇 registration
  • 4 篇 skull
  • 4 篇 machine learning
  • 4 篇 shape completion
  • 4 篇 data augmentatio...
  • 4 篇 virtual reality
  • 3 篇 </bold>
  • 3 篇 generative adver...
  • 3 篇 image segmentati...
  • 3 篇 medical imaging
  • 3 篇 head and neck ca...
  • 3 篇 studierfenster
  • 3 篇 aorta
  • 3 篇 craniotomy

机构

  • 27 篇 comp algorithms ...
  • 11 篇 graz univ techno...
  • 10 篇 graz univ techno...
  • 10 篇 graz univ techno...
  • 9 篇 med univ graz de...
  • 6 篇 med univ graz de...
  • 5 篇 comp algorithms ...
  • 5 篇 german canc cons...
  • 4 篇 fudan univ sch c...
  • 4 篇 univ med essen i...
  • 4 篇 comp algorithms ...
  • 4 篇 univ hosp essen ...
  • 4 篇 fudan univ shang...
  • 4 篇 fudan univ shang...
  • 4 篇 comp algorithms ...
  • 4 篇 med univ graz de...
  • 4 篇 univ med essen c...
  • 4 篇 comp algorithms ...
  • 3 篇 zhejianglab res ...
  • 3 篇 biotechmed graz ...

作者

  • 52 篇 egger jan
  • 35 篇 gsaxner christin...
  • 31 篇 li jianning
  • 27 篇 pepe antonio
  • 11 篇 schmalstieg diet...
  • 10 篇 jin yuan
  • 8 篇 kleesiek jens
  • 8 篇 alves victor
  • 8 篇 chen xiaojun
  • 8 篇 wallner juergen
  • 6 篇 wild daniel
  • 5 篇 ferreira andre
  • 5 篇 lindner lydia
  • 5 篇 zhu shanfeng
  • 5 篇 hofmann-apitius ...
  • 4 篇 wallner jurgen
  • 4 篇 weber maximilian
  • 4 篇 pfarrkirchner bi...
  • 4 篇 froehlich holger
  • 4 篇 von campe gord

语言

  • 101 篇 英文
  • 1 篇 法文
  • 1 篇 其他
检索条件"机构=Comp Algorithms Med Lab"
102 条 记 录,以下是51-60 订阅
排序:
Multi-omic approach decodes paradoxes of the triple-negative breast cancer: lessons for predictive, preventive and personalised medicine
收藏 引用
AMINO ACIDS 2018年 第3-4期50卷 383-395页
作者: Golubnitschaja, Olga Filep, Nora Yeghiazaryan, Kristina Blom, Henricus Johannes Hofmann-Apitius, Martin Kuhn, Walther Rheinische Friedrich Wilhelms Univ Bonn Dept Radiol Sigmund Freud Str 25 D-53105 Bonn Germany Rheinische Friedrich Wilhelms Univ Bonn Breast Canc Res Ctr Bonn Germany Rheinische Friedrich Wilhelms Univ Bonn Ctr Integrated Oncol Bonn Germany Fraunhofer Inst Algorithms & Sci Comp SCAI Dept Bioinformat St Augustin Germany Univ Med Ctr Freiburg Dept Gen Pediat Adolescent Med & Neonatol Lab Clin Biochem & Metab Freiburg Germany Rheinische Friedrich Wilhelms Univ Bonn Ctr Obstet & Gynaecol Bonn Germany
Breast cancer epidemic in the early twenty-first century results in around two million new cases and half-a-million of the disease-related deaths registered annually worldwide. A particularly dramatic situation is att... 详细信息
来源: 评论
FullMeSH: improving large-scale MeSH indexing with full text
收藏 引用
BIOINFORMATICS 2020年 第5期36卷 1533-1541页
作者: Dai, Suyang You, Ronghui Lu, Zhiyong Huang, Xiaodi Mamitsuka, Hiroshi Zhu, Shanfeng Fudan Univ Sch Comp Sci Shanghai 200433 Peoples R China Fudan Univ Shanghai Key Lab Intelligent Informat Proc Shanghai 200433 Peoples R China NIH Natl Ctr Biotechnol Informat Natl Lib Med Bldg 10 Bethesda MD 20892 USA Charles Sturt Univ Sch Comp & Math Albury NSW 2640 Australia Kyoto Univ Bioinformat Ctr Inst Chem Res Uji Kyoto Japan Aalto Univ Dept Comp Sci Espoo Finland Fudan Univ Shanghai Inst Artificial Intelligence Algorithms Shanghai 200433 Peoples R China Fudan Univ Inst Sci & Technol Brain Inspired Intelligence Shanghai 200433 Peoples R China Fudan Univ Minist Educ Key Lab Computat Neurosci & Brain Inspired Intell Shanghai Peoples R China
Motivation: With the rapidly growing biomedical literature, automatically indexing biomedical articles by medical Subject Heading (MeSH), namely MeSH indexing, has become increasingly important for facilitating hypoth...
来源: 评论
A review on multiplatform evaluations of semi-automatic open-source based image segmentation for cranio-maxillofacial surgery
收藏 引用
compUTER METHODS AND PROGRAMS IN BIOmedICINE 2019年 182卷 105102-000页
作者: Wallner, Juergen Schwaiger, Michael Hochegger, Kerstin Gsaxner, Christina Zemann, Wolfgang Egger, Jan Med Univ Graz Dept Oral & Maxillofacial Surg Auenbruggerpl 5-1 A-8036 Graz Austria Comp Algorithms Med Lab A-8010 Graz Austria Graz Univ Technol Inst Comp Graph & Vis Inffeldgasse 16c-2 A-8010 Graz Austria Shanghai Jiao Tong Univ Sch Mech Engn Dong Chuan Rd 800 Shanghai 200240 Peoples R China
Background and objectives: computer-assisted technologies, such as image-based segmentation, play an important role in the diagnosis and treatment support in cranio-maxillofacial surgery. However, although many segmen... 详细信息
来源: 评论
Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
收藏 引用
PEERJ compUTER SCIENCE 2021年 7卷 e773页
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Graz Univ Technol Fac Comp Sci & Biomed Engn Inst Comp Graph & Vis Graz Austria Comp Algorithms Med Lab Graz Austria Med Univ Graz Dept Oral & Maxillofacial Surg Graz Austria Univ Med Essen Inst AI Med IKIM Essen Germany Res Ctr Connected Healthcare Big Data Zhejiang Lab Hangzhou Zhejiang Peoples R China Med Univ Graz Dept Neurosurg Res Unit Expt Neurotraumatol Graz Austria Know Ctr Knowledge Discovery Graz Austria Graz Univ Technol Inst Interact Syst & Data Sci Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
DeepDock: Enhancing Ligand-protein Interaction Prediction by a Combination of Ligand and Structure Information
DeepDock: Enhancing Ligand-protein Interaction Prediction by...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Liao, Zhirui You, Ronghui Huang, Xiaodi Yao, Xiaojun Huang, Tao Zhu, Shanfeng Fudan Univ Sch Comp Sci Shanghai Peoples R China Fudan Univ Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Charles Sturt Univ Sch Comp & Math Albury NSW Australia Macau Univ Sci & Technol State Key Lab Qual Res Chinese Med Taipa Macao Peoples R China Hong Kong Baptist Univ Sch Chinese Med Hong Kong Peoples R China Shenzhen Zhiyao Informat Technol Ltd Shenzhen Peoples R China Fudan Univ Shanghai Inst Artificial Intelligence Algorithms Shanghai Peoples R China Fudan Univ ISTBI Shanghai Peoples R China Nanjing Univ Inst Artificial Intelligence Biomed Nanjing Peoples R China
The prediction of precise protein-ligand binding activities can accelerate drug discovery by virtual screening-a computational technique that predicts whether a small molecule ligand is able to bind to a specific targ... 详细信息
来源: 评论
Augmented Reality for Head and Neck Carcinoma Imaging: Description and Feasibility of an Instant Calibration, Markerless Approach
收藏 引用
compUTER METHODS AND PROGRAMS IN BIOmedICINE 2021年 200卷 105854-105854页
作者: Gsaxner, Christina Pepe, Antonio Li, Jianning Ibrahimpasic, Una Wallner, Juergen Schmalstieg, Dieter Egger, Jan Graz Univ Technol Inst Comp Graph & Vis Inffeldgasse 16 A-8010 Graz Austria Med Univ Graz Dept Oral & Maxillofacial Surg Auenbruggerpl 5 A-8036 Graz Austria Comp Algorithms Med Lab Graz Austria BioTechMed Graz Mozartgasse 12-2 A-8010 Graz Austria AZ Monica Hosp Antwerp Dept Cranio Maxillofacial Surg Antwerp Belgium Antwerp Univ Hosp Antwerp Belgium
Background and Objective: Augmented reality (AR) can help to overcome current limitations in computer assisted head and neck surgery by granting "X-ray vision" to physicians. Still, the acceptance of AR in c... 详细信息
来源: 评论
Prediction of interactiveness of proteins and nucleic acids based on feature selections
收藏 引用
MOLECULAR DIVERSITY 2010年 第4期14卷 627-633页
作者: Yuan, YouLang Shi, XiaoHe Li, XinLei Lu, WenCong Cai, YuDong Gu, Lei Liu, Liang Li, MinJie Kong, XiangYin Xing, Meng Shanghai Univ Coll Sci Dept Chem Chem Data Min Lab Shanghai 200444 Peoples R China Shanghai Jiao Tong Univ Sch Med Inst Hlth Sci Shanghai 200030 Peoples R China Chinese Acad Sci Shanghai Inst Biol Sci Shanghai Peoples R China Shanghai Univ Inst Syst Biol Shanghai 200444 Peoples R China Univ Bonn B IT Dept Life Sci Informat D-53113 Bonn Germany Fraunhofer Inst Algorithms & Sci Comp SCAI Dept Bioinformat D-53754 St Augustin Germany
It is important to identify which proteins can interact with nucleic acids for the purpose of protein annotation, since interactions between nucleic acids and proteins involve in numerous cellular processes such as re... 详细信息
来源: 评论
GENERALISATION OF SEGMENTATION USING GENERATIVE ADVERSARIAL NETWORKS  21
GENERALISATION OF SEGMENTATION USING GENERATIVE ADVERSARIAL ...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Ferreira, Andre Luijten, Gijs Puladi, Behrus Kleesiek, Jens Alves, Victor Egger, Jan Univ Hosp Essen AoR Inst AI Med IKIM Essen Germany Univ Minho Ctr Algoritmi LASI Braga Portugal Comp Algorithms Med Lab Graz Austria Graz Univ Technol Inst Comp Graph & Vis ICG Graz Austria Univ Hosp Essen AoR Canc Res Ctr Cologne Essen CCCE West German Canc Ctr Essen WTZ Essen Germany Univ Hosp RWTH Aachen Inst Med Informat Aachen Germany Univ Hosp RWTH Aachen Dept Oral & Maxillofacial Surg Aachen Germany German Canc Consortium DKTK Partner Site Essen Essen Germany TU Dortmund Univ Dept Phys Dortmund Germany Univ Hosp Essen Ctr Virtual & Extended Real Med ZvRM Essen Germany
State-of-the-art deep learning algorithms are easily biased and evaluated in misleading scenarios, especially in the medical context, where scenarios change rapidly and diseases develop quickly. The BraTS 2024 GoAT ch... 详细信息
来源: 评论
medical deep learning-A systematic meta-review
收藏 引用
compUTER METHODS AND PROGRAMS IN BIOmedICINE 2022年 221卷 106874-106874页
作者: Egger, Jan Gsaxner, Christina Pepe, Antonio Pomykala, Kelsey L. Jonske, Frederic Kurz, Manuel Li, Jianning Kleesiek, Jens Graz Univ Technol Inst Comp Graph & Vis Fac Comp Sci & Biomed Engn Inffeldgasse 16 A-8010 Graz Styria Austria Med Univ Graz Dept Oral &Maxillofacial Surg Auenbruggerpl 5-1 A-8036 Graz Styria Austria Comp Algorithms Med Lab Graz Styria Austria Univ Med Essen Inst Med IKIM Girardetstr 2 D-45131 Essen Germany Univ Med Essen Canc Res Ctr Cologne Essen CCCE Hufelandstr 55 D-45147 Essen Germany German Canc Consortium DKTK Partner Site Essen Hufelandstr 55 D-45147 Essen Germany
Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edg... 详细信息
来源: 评论
Applying Disentanglement in the medical Domain: An Introduction for the MAD Workshop  1st
Applying Disentanglement in the Medical Domain: An Introduct...
收藏 引用
1st Workshop on medical Applications with Disentanglements (MAD) at the MICCAI Conference
作者: Fragemann, Jana Liu, Xiao Li, Jianning Tsaftaris, Sotirios A. Egger, Jan Kleesiek, Jens Univ Hosp Essen AoR Inst AI Med IKIM Girardetstr 2 D-45131 Essen Germany Univ Edinburgh Sch Engn Edinburgh EH9 3FG Midlothian Scotland Graz Univ Technol TUG Inst Comp Graph & Vis ICG Inffeldgasse 16 A-8010 Graz Austria Comp Algorithms Med Lab Graz Austria Alan Turing Inst London NW1 2DB England Univ Hosp Essen AoR Canc Res Ctr Cologne Essen CCCE Hufelandstr 55 D-45147 Essen Germany German Canc Consortium DKTK Partner Site EssenHufelandstr 55 D-45147 Essen Germany
For medical applications, trustworthiness, interpretability, and robustness are necessary properties of (deep) neural networks. For generative models, one approach towards this could be analyzing and structuring the l... 详细信息
来源: 评论