咨询与建议

限定检索结果

文献类型

  • 124 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 192 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 97 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 39 篇 控制科学与工程
    • 26 篇 电子科学与技术(可...
    • 22 篇 信息与通信工程
    • 16 篇 仪器科学与技术
    • 13 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 电气工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
    • 5 篇 矿业工程
    • 3 篇 建筑学
    • 3 篇 土木工程
  • 111 篇 理学
    • 89 篇 数学
    • 31 篇 系统科学
    • 14 篇 生物学
    • 13 篇 统计学(可授理学、...
    • 9 篇 物理学
    • 7 篇 化学
    • 5 篇 地质学
  • 22 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 农学
    • 4 篇 作物学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 3 篇 艺术学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 31 篇 particle swarm o...
  • 19 篇 optimization
  • 11 篇 global optimizat...
  • 9 篇 computational in...
  • 9 篇 educational inst...
  • 9 篇 laboratories
  • 9 篇 particle swarm o...
  • 8 篇 algorithm design...
  • 7 篇 convergence
  • 7 篇 stochastic proce...
  • 6 篇 indexes
  • 6 篇 vectors
  • 6 篇 topology
  • 5 篇 simulation
  • 5 篇 constrained opti...
  • 5 篇 wireless sensor ...
  • 5 篇 benchmark testin...
  • 5 篇 swarm intelligen...
  • 5 篇 stochastic syste...
  • 5 篇 mathematical mod...

机构

  • 136 篇 complex system a...
  • 22 篇 college of elect...
  • 13 篇 state key labora...
  • 12 篇 college of infor...
  • 8 篇 key laboratory o...
  • 6 篇 complex system a...
  • 6 篇 department of el...
  • 5 篇 guangxi high sch...
  • 5 篇 complex system a...
  • 5 篇 department of el...
  • 5 篇 school of electr...
  • 5 篇 state key labora...
  • 4 篇 college of compu...
  • 4 篇 college of compu...
  • 4 篇 complex system a...
  • 4 篇 department of co...
  • 3 篇 complex system a...
  • 3 篇 mechanical and e...
  • 3 篇 shanghai key lab...
  • 3 篇 library and info...

作者

  • 58 篇 cui zhihua
  • 38 篇 zeng jianchao
  • 32 篇 zhihua cui
  • 31 篇 jianchao zeng
  • 21 篇 cai xingjuan
  • 14 篇 tan ying
  • 13 篇 xie liping
  • 13 篇 xingjuan cai
  • 11 篇 zeng jian-chao
  • 11 篇 zhou yongquan
  • 10 篇 ying tan
  • 9 篇 liping xie
  • 7 篇 jian-chao zeng
  • 7 篇 wang lifang
  • 6 篇 sun chaoli
  • 6 篇 pan jengshyang
  • 6 篇 luo qifang
  • 5 篇 chaoli sun
  • 5 篇 li feixiang
  • 5 篇 chen weirong

语言

  • 189 篇 英文
  • 3 篇 中文
检索条件"机构=Complex System and Computational Intelligence Laboratory"
192 条 记 录,以下是91-100 订阅
排序:
Special issue: Swarm intelligent systems: Theory and applications
收藏 引用
Journal of Computers 2011年 第8期6卷 1543-1545页
作者: Cui, Zhihua Shi, Zhongzhi Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology 030024 China Institute of Computing Technology Chinese Academy of Sciences China
来源: 评论
Dynamic Population-based particle swarm optimization combined with crossover operator
Dynamic Population-based particle swarm optimization combine...
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Yanjiang Miao Zhihua Cui Jianchao Zeng Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan Shanxi PR.China 030024
Particle swarm optimization (PSO) is a new swarm intelligent optimization technique. Although it maintains a fast convergent speed, it is still easy trapped into a local optimum when dealing with high-dimensional nume... 详细信息
来源: 评论
Particle Swarm Optimization with group decision making
Particle Swarm Optimization with group decision making
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Liang Wang Zhihua Cui Jianchao Zeng Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan Shanxi PR.China 030024
The particle swarm optimization (PSO) is a stochastic optimization algorithm imitating animal behavior, which shows a bad performance when optimizing the multimodal and high dimensional functions. Each particle uses o... 详细信息
来源: 评论
Using Small-world Model to Improve the Performance of Alignment Particle Swarm Optimization
Using Small-world Model to Improve the Performance of Alignm...
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Xingjuan Cai Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Shanxi P.R.China 030024
Alignment particle swarm optimization (APSO) is a novel variant of particle swarm optimization aiming to improve the population diversity. The topology structure of APSO is gbest model. Since the small-world model is ... 详细信息
来源: 评论
Individual Cognitive Parameter Setting Based on Black Stork Foraging Process
Individual Cognitive Parameter Setting Based on Black Stork ...
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Zhihua Cui Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Shanxi P.R.China 030024
Cognitive learning factor is an important parameter in particle swarm optimization algorithm(PSO). Although many selection strategies have been proposed, there is still much work need to do. Inspired by the black stor... 详细信息
来源: 评论
Probability Diffused Particle Swarm Optimization
Probability Diffused Particle Swarm Optimization
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Qiuyan Qin Zhihua Cui Jianchao Zeng Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan Shanxi PR.China 030024
Premature convergence is a major problem of Particle Swarm Optimization (PSO).Although many strategies have been proposed, there is still some work needed to do in high-dimensional cases. To overcome this shortcoming,... 详细信息
来源: 评论
Artificial plant optimization algorithm for constrained optimization problems
Artificial plant optimization algorithm for constrained opti...
收藏 引用
2011 2nd International Conference on Innovations in Bio-inspired Computing and Applications, IBICA 2011
作者: Zhao, Ziqiang Cui, Zhihua Zeng, Jianchao Yue, Xiaoguang Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan 030024 China Library and Information Center Shanxi University of Traditional Chinese Medicine Taiyuan 030024 China College of Computer and Information Southwest Forestry University Kunming 650224 China
Artificial plant optimization algorithm is proposed to solve constrained optimization problems in this paper. In APOA, a shrinkage coefficient is introduce to ensure that all dimensions of a branch are within lower an... 详细信息
来源: 评论
Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm
Comparison and Analysis of the Selection Mechanism in the Ar...
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Li Bao Jian-chao Zeng Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan Shanxi PR. China 030024
Artificial bee colony (ABC) algorithm is a new global stochastic optimization algorithm based on the particular intelligent behavior of honeybee swarms, in which there exists many issues to be improved and solved. Whe... 详细信息
来源: 评论
Inertia Weight Selection Strategy Based On Lyapunov Stability Analysis
Inertia Weight Selection Strategy Based On Lyapunov Stabilit...
收藏 引用
2009 Ninth International Conference on Hybrid Intelligent systems(第九届混合智能系统国际会议 HIS 2009)
作者: Weibing Fan Zhihua Cui Jianchao Ceng Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology Taiyuan Shanxi PR.China 030024
In this paper, the Lyapunov stability theory is employed to analyze the stability of standard version of particle swarm optimization, and a random inertia weight selection strategy is obtained from the analyzed result... 详细信息
来源: 评论
Hybrid Group Search Optimiser with quadratic interpolation method and its application
收藏 引用
International Journal of Wireless and Mobile Computing 2011年 第1期5卷 98-106页
作者: Yao, Jian Cui, Zhihua Wei, Zhanhong Tan, Ying Complex System and Computational Intelligence Laboratory Taiyuan University of Science and Technology No. 66 Waliu Road Wanbailin District Taiyuan Shanxi 030024 China
Group Search Optimiser (GSO) is a new swarm intelligence optimiser algorithm inspired by animal social behaviours. In this paper, we proposed two variants of GSO to improve its search capability, and applied them to s... 详细信息
来源: 评论