How can the interaction between theoretical neuro-scientists and their experimental counterparts be improved? This article discusses a number of suggestions relating to the presentation of data in experimental studies...
How can the interaction between theoretical neuro-scientists and their experimental counterparts be improved? This article discusses a number of suggestions relating to the presentation of data in experimental studies. In particular, published data should account for the diversity of response properties encountered, rather than concentrating on the 'representative' response, as well as emphasizing the stochastic nature of neurons by routinely including raw, unprocessed data from individual trials, which show the degree of variability prior to averaging.
Stochastic fluctuations of voltage-gated ion channels generate current and voltage noise in neuronal membranes. This noise may be a critical determinant of the efficacy of information processing within neuralsystems....
详细信息
ISBN:
(纸本)0262194503
Stochastic fluctuations of voltage-gated ion channels generate current and voltage noise in neuronal membranes. This noise may be a critical determinant of the efficacy of information processing within neuralsystems. Using Monte-Carlo simulations, we carry out a systematic investigation of the relationship between channel kinetics and the resulting membrane voltage noise using a stochastic Markov version of the Mainen-Sejnowski model of dendritic excitability in cortical neurons. Our simulations show that kinetic parameters which lead to an increase in membrane excitability (increasing channel densities, decreasing temperature) also lead to an increase in the magnitude of the sub-threshold voltage noise. Noise also increases as the membrane is depolarized from rest towards threshold. This suggests that channel fluctuations may interfere with a neuron's ability to function as an integrator of its synaptic inputs and may limit the reliability and precision of neural information processing.
Standard techniques for segmenting color images are based on finding normalized RGB discontinuities, color histogramming, or clustering techniques in RGB or CIE color spaces. The use of the psychophysical variable hue...
详细信息
Standard techniques for segmenting color images are based on finding normalized RGB discontinuities, color histogramming, or clustering techniques in RGB or CIE color spaces. The use of the psychophysical variable hue in HSI space has not been popular due to its numerical instability at low saturations. In this article, we propose the use of a simplified hue description suitable for implementation in analog VLSI. We demonstrate that if the integrated white condition holds, hue is invariant to certain types of highlights, shading, and shadows. This is due to the additive/shift invariance property, a property that other color variables lack. The more restrictive uniformly varying lighting model associated with the multiplicative/scale invariance property shared by both hue and normalized RGB allows invariance to transparencies, and to simple models of shading and shadows. Using binary hue discontinuities in conjunction with first-order type of surface interpolation, we demonstrate these invariant properties and compare them against the performance of RGB, normalized RGB, and CIE color spaces. We argue that working in HSI space offers an effective method for segmenting scenes in the presence of confounding cues due to shading, transparency, highlights, and shadows. Based on this work, we designed and fabricated for the first time an analog CMOS VLSI circuit with on-board phototransistor input that computes normalized color and hue.
作者:
BOWER, JM1. Division of Biology
Computation and Neural Systems Program California Institute of Technology 91125 Pasadena CA
During learning of overlapping input patterns in an associative memory, recall of previously stored patterns can interfere with the learning of new patterns. Most associative memory models avoid this difficulty by ign...
详细信息
During learning of overlapping input patterns in an associative memory, recall of previously stored patterns can interfere with the learning of new patterns. Most associative memory models avoid this difficulty by ignoring the effect of previously modified connections during learning, by clamping network activity to the patterns to be learned. Through the interaction of experimental and modeling techniques, we now have evidence to suggest that a somewhat analogous approach may have been taken by biology within the olfactory cerebral cortex. Specifically we have recently discovered that the naturally occurring neuromodulator acetylcholine produces a variety of effects on cortical cells and circuits which, when taken together, can prevent memory interference in a biologically realistic memory model. Further, it has been demonstrated that these biological mechanisms can actually improve the memory storage performance of previously published abstract ''neural network'' associative memory models.
Both vertebrate and invertebrate retinas are highly efficient in extracting contrast independent of the background intensity over five or more decades. This efficiency has been rendered possible by the adaptation of t...
详细信息
The spatial coincidence of somatosensory cerebral cortex (SI) and trigeminal projections to the cerebellar hemisphere has been previously demonstrated. In this paper we describe the temporal relationship between tacti...
详细信息
The spatial coincidence of somatosensory cerebral cortex (SI) and trigeminal projections to the cerebellar hemisphere has been previously demonstrated. In this paper we describe the temporal relationship between tactilely-evoked responses in SI and in the granule cell layer of the cerebellar hemisphere, in anesthetized rats. We simultaneously recorded field potentials in areas of common receptive fields of SI and of the cerebellar folium crus IIa after peripheral tactile stimulation of the corresponding facial area. Response of the cerebellar granule cell layer to a brief tactile stimulation consisted of two components at different latencies. We found a strong correlation between the latency of the SI response and that of the second (long-latency) cerebellar component following facial stimulation. No such relationship was found between the latency of the SI response and that of the first (short-latency) cerebellar component, originating from a direct trigeminocerebellar pathway. In addition, lidocaine pressure injection in SI, cortical ablation, and decerebration all significantly affected the second cerebellar peak but not the first. Further, when tactile stimuli were presented 75 ms apart, the response in SI failed, as did the second cerebellar peak, while the short-latency cerebellar response still occurred. We found a wide spatial distribution of the upper lip response beyond the upper lip area in crus IIa for the long-latency component of the cerebellar response. Our results demonstrate that SI is the primary contributor to the cerebellar long-latency response to peripheral tactile stimulation. These results are discussed in the context of Purkinje cell responses to tactile input.
We previously proposed a quantitative model of early visual processing in primates, based on non-linearly interacting visual filters and statistically efficient decision. We now use this model to interpret the observe...
详细信息
ISBN:
(纸本)0262112450
We previously proposed a quantitative model of early visual processing in primates, based on non-linearly interacting visual filters and statistically efficient decision. We now use this model to interpret the observed modulation of a range of human psychophysical thresholds with and without focal visual attention. Our model-calibrated by an automatic fitting procedure - simultaneously reproduces thresholds for four classical pattern discrimination tasks, performed while attention was engaged by another concurrent task. Our model then predicts that the seemingly complex improvements of certain thresholds, which we observed when attention was fully available for the discrimination tasks, can best be explained by a strengthening of competition among early visual filters.
We propose a model for early visual processing in primates. The model consists of a population of linear spatial filters which interact through non-linear excitatory and inhibitory pooling. Statistical estimation theo...
详细信息
ISBN:
(纸本)0262100762
We propose a model for early visual processing in primates. The model consists of a population of linear spatial filters which interact through non-linear excitatory and inhibitory pooling. Statistical estimation theory is then used to derive human psychophysical thresholds from the responses of the entire population of units. The model is able to reproduce human thresholds for contrast and ori-entation discrimination tasks, and to predict contrast thresholds in the presence of masks of varying orientation and spatial frequency.
Rhythmic motor patterns can be induced in leg motor neurons of isolated locust thoracic ganglia by bath application of pilocarpine. We observed that the relative phases of levators and depressors differed in the three...
Identifying and classifying action potential shapes in extracellular neural waveforms have long been the subject of research, and although several algorithms for this purpose have been successfully applied, their use ...
Identifying and classifying action potential shapes in extracellular neural waveforms have long been the subject of research, and although several algorithms for this purpose have been successfully applied, their use has been limited by some outstanding problems. The first is how to determine shapes of the action potentials in the waveform and, second, how to decide how many shapes are distinct. A harder problem is that action potentials frequently overlap making difficult both the determination of the shapes and the classification of the spikes. In this report, a solution to each of these problems is obtained by applying Bayesian probability theory. By defining a probabilistic model of the waveform, the probability of both the form and number of spike shapes can be quantified. In addition, this framework is used to obtain an efficient algorithm for the decomposition of arbitrarily complex overlap sequences. This algorithm can extract many times more information than previous methods and facilitates the extracellular investigation of neuronal classes and of interactions within neuronal circuits.
暂无评论