咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 控制科学与工程
    • 13 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 9 篇 系统科学
    • 7 篇 数学
    • 7 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 dynamics
  • 5 篇 force
  • 5 篇 robots
  • 5 篇 humanoid robots
  • 4 篇 computational mo...
  • 3 篇 tuning
  • 3 篇 reinforcement le...
  • 3 篇 state estimation
  • 3 篇 anthropomorphic ...
  • 3 篇 data models
  • 3 篇 standards
  • 3 篇 joints
  • 3 篇 controllers
  • 2 篇 legged locomotio...
  • 2 篇 robot
  • 2 篇 humanoid
  • 2 篇 friction
  • 2 篇 training data
  • 2 篇 three-dimensiona...

机构

  • 7 篇 autonomous motio...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 5 篇 computational le...
  • 5 篇 max planck insti...
  • 4 篇 bosch center for...
  • 4 篇 computational le...
  • 4 篇 computational le...
  • 2 篇 tandon school of...
  • 2 篇 computational le...
  • 2 篇 department of ad...
  • 2 篇 computational le...
  • 2 篇 autonomous motio...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 autonomous motio...
  • 2 篇 department of co...
  • 2 篇 autonomous motio...
  • 2 篇 max-planck-insti...

作者

  • 25 篇 stefan schaal
  • 18 篇 schaal stefan
  • 10 篇 ludovic righetti
  • 6 篇 nicholas rotella
  • 6 篇 righetti ludovic
  • 6 篇 trimpe sebastian
  • 6 篇 jeannette bohg
  • 5 篇 marco alonso
  • 4 篇 evangelos theodo...
  • 4 篇 theodorou evange...
  • 4 篇 sean mason
  • 4 篇 stulp freek
  • 4 篇 buchli jonas
  • 3 篇 sebastian trimpe
  • 3 篇 franziska meier
  • 3 篇 philipp hennig
  • 3 篇 doerr andreas
  • 3 篇 rotella nicholas
  • 3 篇 nguyen-tuong duy
  • 3 篇 daniel kappler

语言

  • 47 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control Lab"
48 条 记 录,以下是1-10 订阅
排序:
Reinforcement learning of full-body humanoid motor skills
Reinforcement learning of full-body humanoid motor skills
收藏 引用
2010 10th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2010
作者: Stulp, Freek Buchli, Jonas Theodorou, Evangelos Schaal, Stefan Computational Learning and Motor Control Lab University of Southern California Los Angeles CA 90089 United States
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms wo... 详细信息
来源: 评论
Hierarchical reinforcement learning with movement primitives
Hierarchical reinforcement learning with movement primitives
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Stulp, Freek Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States
Temporal abstraction and task decomposition drastically reduce the search space for planning and control, and are fundamental to making complex tasks amenable to learning. In the context of reinforcement learning, tem... 详细信息
来源: 评论
An iterative path integral stochastic optimal control approach for learning robotic tasks
An iterative path integral stochastic optimal control approa...
收藏 引用
作者: Theodorou, Evangelos Stulp, Freek Buchli, Jonas Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California United States Department of Advanced Robotics Italian Institute of Technology Italy ATR Computational Neuroscience Laboratories Kyoto 619-0288 Japan
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a);Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The p... 详细信息
来源: 评论
Compliant control for quadrupedal walking over rough terrain  13th
Compliant control for quadrupedal walking over rough terrain
收藏 引用
13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2010
作者: Buchli, Jonas Kalakrishnan, Mrinal Mistry, Michael Pastor, Peter Schaal, Stefan Computational Learning and Motor Control Lab University of Southern California Los AngelesCA90089 United States Disney Research PittsburghPA15213 United States
An often used stability criterion in legged locomotion is the zero moment point (ZMP). The ZMP is a virtual point calculated based on the center of gravity (COG) position and acceleration and must be kept within the s... 详细信息
来源: 评论
Towards Associative Skill Memories
Towards Associative Skill Memories
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Peter Pastor Mrinal Kalakrishnan Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles USA
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to cr... 详细信息
来源: 评论
Reinforcement learning of full-body humanoid motor skills
Reinforcement learning of full-body humanoid motor skills
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Freek Stulp Jonas Buchli Evangelos Theodorou Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles CA
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms wo... 详细信息
来源: 评论
Quadratic programming for inverse dynamics with optimal distribution of contact forces
Quadratic programming for inverse dynamics with optimal dist...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles USA
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In ... 详细信息
来源: 评论
learning to Grasp under Uncertainty
Learning to Grasp under Uncertainty
收藏 引用
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
作者: Freek Stulp Evangelos Theodorou Jonas Buchli Stefan Schaal Computational Learning and Motor Control Lab University of Southern CaliforniaLos AngelesCA 90089
We present an approach that enables robots to learn motion primitives that are robust towards state estimation uncertainties. During reaching and preshaping, the robot learns to use fine manipulation strategies to man... 详细信息
来源: 评论
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
Virtual vs. real: Trading off simulations and physical exper...
收藏 引用
2017 IEEE International Conference on Robotics and Automation, ICRA 2017
作者: Marco, Alonso Berkenkamp, Felix Hennig, Philipp Schoellig, Angela P. Krause, Andreas Schaal, Stefan Trimpe, Sebastian Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science ETH Zurich Switzerland Canada Computational Learning and Motor Control Lab University of Southern California United States Max Planck ETH Center for Learning Systems Tubingen Germany Zurich Switzerland
In practice, the parameters of control policies are often tuned manually. This is time-consuming and frustrating. Reinforcement learning is a promising alternative that aims to automate this process, yet often require... 详细信息
来源: 评论
Compact models of motor primitive variations for predictable reaching and obstacle avoidance
Compact models of motor primitive variations for predictable...
收藏 引用
9th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS09
作者: Stulp, Freek Oztop, Erhan Pastor, Peter Beetz, Michael Schaaz, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA United States Kyoto Japan Computational Neuroscience Laboratories Advanced Telecommunications Research Institute International Kyoto Japan Intelligent Autonomous Systems Group Technische Universitdt Munchen Munich Germany
In most activities of daily living, related tasks are encountered over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of st... 详细信息
来源: 评论