咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 控制科学与工程
    • 13 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 9 篇 系统科学
    • 7 篇 数学
    • 7 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 dynamics
  • 5 篇 force
  • 5 篇 robots
  • 5 篇 humanoid robots
  • 4 篇 computational mo...
  • 3 篇 tuning
  • 3 篇 reinforcement le...
  • 3 篇 state estimation
  • 3 篇 anthropomorphic ...
  • 3 篇 data models
  • 3 篇 standards
  • 3 篇 joints
  • 3 篇 controllers
  • 2 篇 legged locomotio...
  • 2 篇 robot
  • 2 篇 humanoid
  • 2 篇 friction
  • 2 篇 training data
  • 2 篇 three-dimensiona...

机构

  • 7 篇 autonomous motio...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 5 篇 computational le...
  • 5 篇 max planck insti...
  • 4 篇 bosch center for...
  • 4 篇 computational le...
  • 4 篇 computational le...
  • 2 篇 tandon school of...
  • 2 篇 computational le...
  • 2 篇 department of ad...
  • 2 篇 computational le...
  • 2 篇 autonomous motio...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 autonomous motio...
  • 2 篇 department of co...
  • 2 篇 autonomous motio...
  • 2 篇 max-planck-insti...

作者

  • 25 篇 stefan schaal
  • 18 篇 schaal stefan
  • 10 篇 ludovic righetti
  • 6 篇 nicholas rotella
  • 6 篇 righetti ludovic
  • 6 篇 trimpe sebastian
  • 6 篇 jeannette bohg
  • 5 篇 marco alonso
  • 4 篇 evangelos theodo...
  • 4 篇 theodorou evange...
  • 4 篇 sean mason
  • 4 篇 stulp freek
  • 4 篇 buchli jonas
  • 3 篇 sebastian trimpe
  • 3 篇 franziska meier
  • 3 篇 philipp hennig
  • 3 篇 doerr andreas
  • 3 篇 rotella nicholas
  • 3 篇 nguyen-tuong duy
  • 3 篇 daniel kappler

语言

  • 47 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control Lab"
48 条 记 录,以下是21-30 订阅
排序:
Efficient Bayesian Local Model learning for control
Efficient Bayesian Local Model Learning for Control
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Franziska Meier Philipp Hennig Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles CA 90089 USA Max-Planck-Institute for Intelligent Systems 72076 Tubingen Germany
Model-based control is essential for compliant control and force control in many modern complex robots, like humanoid or disaster robots. Due to many unknown and hard to model nonlinearities, analytical models of such... 详细信息
来源: 评论
Inertial Sensor-Based Humanoid Joint State Estimation
Inertial Sensor-Based Humanoid Joint State Estimation
收藏 引用
IEEE International Conference on Robotics and Automation
作者: Nicholas Rotella Sean Mason Stefan Schaal Ludovic Righetti Computational Learning and Motor Control Lab University of Southern California Los Angeles California Autonomous Motion Department Max Planck Institute for Intelligent Systems Tuebingen Germany
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a t... 详细信息
来源: 评论
Balancing and walking using full dynamics LQR control with contact constraints
Balancing and walking using full dynamics LQR control with c...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Sean Mason Nicholas Rotella Stefan Schaal Ludovic Righetti Computational Learning and Motor Control Lab University of Southern California Los Angeles California Autonomous Motion Department Max Planck Institute for Intelligent Systems Tuebingen Germany
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complex... 详细信息
来源: 评论
Full dynamics LQR control of a humanoid robot: An experimental study on balancing and squatting
Full dynamics LQR control of a humanoid robot: An experiment...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Sean Mason Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Anleles California Autonomous Motion Department Max Planck Institute for Intelligent Systems Tuebingen Germany
Humanoid robots operating in human environments require whole-body controllers that can offer precise tracking and well-defined disturbance rejection behavior. In this contribution, we propose an experimental evaluati... 详细信息
来源: 评论
Probabilistic Object Tracking using a Range Camera
Probabilistic Object Tracking using a Range Camera
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Manuel Wuthrich Peter Pastor Mrinal Kalakrishnan Jeannette Bohg Stefan Schaal Autonomous Motion Department at the Max-Planck-Institute for Intelligent Systems Tubingen Germany Computational Learning and Motor Control lab at the University of Southern California Los Angeles CA USA
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the ... 详细信息
来源: 评论
Balancing and walking using full dynamics LQR control with contact constraints
arXiv
收藏 引用
arXiv 2017年
作者: Mason, Sean Rotella, Nicholas Schaal, Stefan Righetti, Ludovic Computational Learning and Motor Control Lab University of Southern California Los AngelesCA United States Autonomous Motion Department Max Planck Institute for Intelligent Systems Tuebingen Germany
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complex... 详细信息
来源: 评论
learning and Adaptation of Inverse Dynamics Models: A Comparison
Learning and Adaptation of Inverse Dynamics Models: A Compar...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Kevin Hitzler Franziska Meier Stefan Schaal Tamim Asfour Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany Max-Planck-Institute of Intelligent Systems Germany and Computational Learning and Motor Control Lab University of Southern California USA
Performing tasks with high accuracy while interacting with the real world requires a robot to have an exact representation of its inverse dynamics that can be adapted to new situations. In the past, various methods fo... 详细信息
来源: 评论
Leveraging big data for grasp planning
Leveraging big data for grasp planning
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Daniel Kappler Jeannette Bohg Stefan Schaal Autonomous Motion Department at the Max-Planck-Institute for Intelligent Systems Tübingen Germany Computational Learning and Motor Control lab at the University of Southern California Los Angeles CA USA
We propose a new large-scale database containing grasps that are applied to a large set of objects from numerous categories. These grasps are generated in simulation and are annotated with different grasp stability me... 详细信息
来源: 评论
Probabilistic Recurrent State-Space Models
arXiv
收藏 引用
arXiv 2018年
作者: Doerr, Andreas Daniel, Christian Schiegg, Martin Nguyen-Tuong, Duy Schaal, Stefan Toussaint, Marc Trimpe, Sebastian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tübingen Germany Computational Learning and Motor Control Lab University of Southern California United States Machine Learning and Robotics Lab University of Stuttgart Germany
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g. LSTMs) proved extremely successful in modelin... 详细信息
来源: 评论
Parameter learning for improving binary descriptor matching
Parameter learning for improving binary descriptor matching
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Bharath Sankaran Srikumar Ramalingam Yuichi Taguchi Computational Learning and Motor Control Lab University of Southern California Los Angeles 90089 United States of America Mitsubishi Electric Research Labs Cambridge MA 02139 United States of America
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descripto... 详细信息
来源: 评论