咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 控制科学与工程
    • 13 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 9 篇 系统科学
    • 7 篇 数学
    • 7 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 dynamics
  • 5 篇 force
  • 5 篇 robots
  • 5 篇 humanoid robots
  • 4 篇 computational mo...
  • 3 篇 tuning
  • 3 篇 reinforcement le...
  • 3 篇 state estimation
  • 3 篇 anthropomorphic ...
  • 3 篇 data models
  • 3 篇 standards
  • 3 篇 joints
  • 3 篇 controllers
  • 2 篇 legged locomotio...
  • 2 篇 robot
  • 2 篇 humanoid
  • 2 篇 friction
  • 2 篇 training data
  • 2 篇 three-dimensiona...

机构

  • 7 篇 autonomous motio...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 5 篇 computational le...
  • 5 篇 max planck insti...
  • 4 篇 bosch center for...
  • 4 篇 computational le...
  • 4 篇 computational le...
  • 2 篇 tandon school of...
  • 2 篇 computational le...
  • 2 篇 department of ad...
  • 2 篇 computational le...
  • 2 篇 autonomous motio...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 autonomous motio...
  • 2 篇 department of co...
  • 2 篇 autonomous motio...
  • 2 篇 max-planck-insti...

作者

  • 25 篇 stefan schaal
  • 18 篇 schaal stefan
  • 10 篇 ludovic righetti
  • 6 篇 nicholas rotella
  • 6 篇 righetti ludovic
  • 6 篇 trimpe sebastian
  • 6 篇 jeannette bohg
  • 5 篇 marco alonso
  • 4 篇 evangelos theodo...
  • 4 篇 theodorou evange...
  • 4 篇 sean mason
  • 4 篇 stulp freek
  • 4 篇 buchli jonas
  • 3 篇 sebastian trimpe
  • 3 篇 franziska meier
  • 3 篇 philipp hennig
  • 3 篇 doerr andreas
  • 3 篇 rotella nicholas
  • 3 篇 nguyen-tuong duy
  • 3 篇 daniel kappler

语言

  • 47 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control Lab"
48 条 记 录,以下是31-40 订阅
排序:
Probabilistic Object Tracking using a Range Camera
Probabilistic Object Tracking using a Range Camera
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Manuel Wuthrich Peter Pastor Mrinal Kalakrishnan Jeannette Bohg Stefan Schaal Autonomous Motion Department at the Max-Planck-Institute for Intelligent Systems Tubingen Germany Computational Learning and Motor Control lab at the University of Southern California Los Angeles CA USA
We address the problem of tracking the 6-DoF pose of an object while it is being manipulated by a human or a robot. We use a dynamic Bayesian network to perform inference and compute a posterior distribution over the ... 详细信息
来源: 评论
Towards Associative Skill Memories
Towards Associative Skill Memories
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Peter Pastor Mrinal Kalakrishnan Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles USA
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to cr... 详细信息
来源: 评论
Quadratic programming for inverse dynamics with optimal distribution of contact forces
Quadratic programming for inverse dynamics with optimal dist...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles USA
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In ... 详细信息
来源: 评论
Movement segmentation and recognition for imitation learning  15
Movement segmentation and recognition for imitation learning
收藏 引用
15th International Conference on Artificial Intelligence and Statistics, AISTATS 2012
作者: Meier, Franziska Theodorou, Evangelos Schaal, Stefan Computational Learning and Motor Control Lab University of Southern California Los Angeles United States Department of Computer Science and Engineering University of Washington Seattle United States Max-Planck-Institute for Intelligent Systems Tübingen Germany
In human movement learning, it is most common to teach constituent elements of complex movements in isolation, before chaining them into complex movements. Segmentation and recognition of observed movement could thus ... 详细信息
来源: 评论
Encoding of periodic and their transient motions by a single dynamic movement primitive
Encoding of periodic and their transient motions by a single...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Johannes Ernesti Ludovic Righetti Martin Do Tamim Asfour Stefan Schaal Karlsruher Institut fur Technologie Karlsruhe Baden-Württemberg DE Computational Learning and Motor Control Lab University of Southern California Los Angeles California Institute for Anthropomatics Karlsruhe Institute of Technology Germany
Present formulations of periodic dynamic movement primitives (DMPs) do not encode the transient behavior required to start the rhythmic motion, although these transient movements are an important part of the rhythmic ...
来源: 评论
Hierarchical reinforcement learning with movement primitives
Hierarchical reinforcement learning with movement primitives
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Stulp, Freek Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States
Temporal abstraction and task decomposition drastically reduce the search space for planning and control, and are fundamental to making complex tasks amenable to learning. In the context of reinforcement learning, tem... 详细信息
来源: 评论
An iterative path integral stochastic optimal control approach for learning robotic tasks
An iterative path integral stochastic optimal control approa...
收藏 引用
作者: Theodorou, Evangelos Stulp, Freek Buchli, Jonas Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California United States Department of Advanced Robotics Italian Institute of Technology Italy ATR Computational Neuroscience Laboratories Kyoto 619-0288 Japan
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a);Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The p... 详细信息
来源: 评论
learning to Grasp under Uncertainty
Learning to Grasp under Uncertainty
收藏 引用
2011 IEEE International Conference on Robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
作者: Freek Stulp Evangelos Theodorou Jonas Buchli Stefan Schaal Computational Learning and Motor Control Lab University of Southern CaliforniaLos AngelesCA 90089
We present an approach that enables robots to learn motion primitives that are robust towards state estimation uncertainties. During reaching and preshaping, the robot learns to use fine manipulation strategies to man... 详细信息
来源: 评论
An Iterative Path Integral Stochastic Optimal control Approach for learning Robotic Tasks
收藏 引用
IFAC Proceedings Volumes 2011年 第1期44卷 11594-11601页
作者: Evangelos Theodorou Freek Stulp Jonas Buchli Stefan Schaal Computational Learning and Motor Control Lab University of Southern California USA Department of Advanced Robotics Italian Institute of Technology ATR Computational Neuroscience Laboratories Kyoto 619-0288 Japan
Abstract Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spa... 详细信息
来源: 评论
control of legged robots with optimal distribution of contact forces
Control of legged robots with optimal distribution of contac...
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Righetti, Ludovic Buchli, Jonas Mistry, Michael Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States Max Planck Institute for Intelligent Systems Tübingen Germany Dept. of Advanced Robotics Italian Institute of Technology Genoa Italy Disney Research Pittsburgh Pittsburgh PA 15213 United States
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of cruc... 详细信息
来源: 评论