咨询与建议

限定检索结果

文献类型

  • 19 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 3 篇 控制科学与工程
    • 3 篇 计算机科学与技术...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物医学工程(可授...
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 生物工程
  • 4 篇 理学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 robots
  • 4 篇 robustness
  • 3 篇 legged locomotio...
  • 3 篇 laboratories
  • 3 篇 noise
  • 3 篇 humanoid robots
  • 3 篇 control systems
  • 3 篇 shape
  • 3 篇 joints
  • 3 篇 cost function
  • 2 篇 grasping
  • 2 篇 leg
  • 2 篇 force control
  • 2 篇 robust control
  • 2 篇 cameras
  • 2 篇 motor drives
  • 2 篇 covariance matri...
  • 2 篇 computational mo...
  • 2 篇 learning

机构

  • 14 篇 computational le...
  • 2 篇 disney research ...
  • 2 篇 department of ad...
  • 2 篇 university of so...
  • 1 篇 intelligent auto...
  • 1 篇 department of el...
  • 1 篇 computational le...
  • 1 篇 department of el...
  • 1 篇 brain simulation...
  • 1 篇 disney research ...
  • 1 篇 faculty of micro...
  • 1 篇 dept of humanoid...
  • 1 篇 school of comput...
  • 1 篇 learning algorit...
  • 1 篇 dokuritsu gyosei...
  • 1 篇 kawato dynamic b...
  • 1 篇 computational le...
  • 1 篇 atr human inform...
  • 1 篇 jst-icorp comput...
  • 1 篇 robotic embedded...

作者

  • 12 篇 stefan schaal
  • 7 篇 peter pastor
  • 5 篇 freek stulp
  • 5 篇 jonas buchli
  • 5 篇 mrinal kalakrish...
  • 5 篇 ludovic righetti
  • 4 篇 evangelos theodo...
  • 4 篇 michael mistry
  • 3 篇 schaal stefan
  • 3 篇 s. schaal
  • 2 篇 a.j. ijspeert
  • 2 篇 ijspeert auke
  • 2 篇 j. nakanishi
  • 2 篇 nakanishi jun
  • 1 篇 alice ellmer
  • 1 篇 franziska meier
  • 1 篇 righetti ludovic
  • 1 篇 g. tevatia
  • 1 篇 gay sebastien
  • 1 篇 jonathan binney

语言

  • 21 篇 英文
检索条件"机构=Computational Learning and Motor Control Laboratory"
21 条 记 录,以下是1-10 订阅
排序:
Trajectory formation for imitation with nonlinear dynamical systems
Trajectory formation for imitation with nonlinear dynamical ...
收藏 引用
2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Ijspeert, Auke Jan Nakanishi, Jun Schaal, Stefan Computational Learning Motor Control Laboratory University of Southern California Los Angeles CA 90089-2520 United States
This article explores a new approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed moveme... 详细信息
来源: 评论
A 3-D biomechanical model of the salamander  2
收藏 引用
2nd International Conference on Virtual Worlds, VW 2000
作者: Jan, Auke Brain Simulation Laboratory and Computational Learning and Motor Control Laboratory University of Southern California Hedco Neuroscience Building Los AngelesCA90089 United States
This article describes a 3D biomechanical simulation of a salamander to be used in experiments in computational neuroethology. The physically-based simulation represents the salamander as an articulated body, actuated... 详细信息
来源: 评论
learning force control policies for compliant manipulation
Learning force control policies for compliant manipulation
收藏 引用
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Mrinal Kalakrishnan Ludovic Righetti Peter Pastor Stefan Schaal Computational Learning and Motor Control laboratory University of Southern California Los Angeles CA USA
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in hum... 详细信息
来源: 评论
Hierarchical reinforcement learning with movement primitives
Hierarchical reinforcement learning with movement primitives
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Freek Stulp Stefan Schaal Computational Learning and Motor Control Laboratory University of Southern California Los Angeles CA USA
Temporal abstraction and task decomposition drastically reduce the search space for planning and control, and are fundamental to making complex tasks amenable to learning. In the context of reinforcement learning, tem... 详细信息
来源: 评论
Compliant quadruped locomotion over rough terrain
Compliant quadruped locomotion over rough terrain
收藏 引用
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Jonas Buchli Mrinal Kalakrishnan Michael Mistry Peter Pastor Stefan Schaal Computational Learning and Motor Control Laboratory University of Southern California Los Angeles CA USA
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a fe... 详细信息
来源: 评论
learning motion primitive goals for robust manipulation
Learning motion primitive goals for robust manipulation
收藏 引用
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Freek Stulp Evangelos Theodorou Mrinal Kalakrishnan Peter Pastor Ludovic Righetti Stefan Schaal Computational Learning and Motor Control laboratory University of Southern California Los Angeles CA USA
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, th... 详细信息
来源: 评论
Movement segmentation using a primitive library
Movement segmentation using a primitive library
收藏 引用
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Franziska Meier Evangelos Theodorou Freek Stulp Stefan Schaal Computational Learning and Motor Control laboratory University of Southern California Los Angeles CA USA
Segmenting complex movements into a sequence of primitives remains a difficult problem with many applications in the robotics and vision communities. In this work, we show how the movement segmentation problem can be ... 详细信息
来源: 评论
Editorial
收藏 引用
International Journal of Humanoid Robotics 2005年 第4期2卷 389-390页
作者: CHENG, GORDON SCHAAL, STEFAN ATKESON, CHRISTOPHER G. JST-ICORP Computational Brain Project ATR Computational Neuroscience Laboratory 2-2-2 Keihanna Science City Soraku-gun Kyoto619-0288 Japan Computational Learning and Motor Control Lab University of Southern California Hedco Neurosciences Building HNB-103 3641 Watt Way Los AngelesCA90089-2520 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States
来源: 评论
Reinforcement learning of motor skills in high dimensions: A path integral approach
Reinforcement learning of motor skills in high dimensions: A...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Evangelos Theodorou Jonas Buchli Stefan Schaal Computational Learning and Motor Control Laboratory in Computer Science Biomedical Engineering Neuroscience University of Southern California USA
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that... 详细信息
来源: 评论
Probabilistic depth image registration incorporating nonvisual information
Probabilistic depth image registration incorporating nonvisu...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Manuel Wüthrich Peter Pastor Ludovic Righetti Aude Billard Stefan Schaal Faculty of Micro Engineering EPF Lausanne Switzerland Computational Learning and Motor Control Laboratory (CLMC) USC USA Learning Algorithms and Systems Laboratory (LASA) EPF Lausanne Switzerland
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is av... 详细信息
来源: 评论