咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 7 篇 计算机科学与技术...
    • 5 篇 控制科学与工程
    • 5 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 理学
    • 4 篇 数学
    • 4 篇 系统科学
    • 2 篇 物理学
    • 1 篇 生物学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 2 篇 reinforcement le...
  • 2 篇 additive noise
  • 1 篇 complex networks
  • 1 篇 friction compens...
  • 1 篇 object detection
  • 1 篇 learning systems
  • 1 篇 scalability
  • 1 篇 neurons
  • 1 篇 integral equatio...
  • 1 篇 multiplicative n...
  • 1 篇 function approxi...
  • 1 篇 maximum principl...
  • 1 篇 planning
  • 1 篇 nonlinear contro...
  • 1 篇 orbital robotics
  • 1 篇 vocabulary
  • 1 篇 null space
  • 1 篇 motion control
  • 1 篇 optimization
  • 1 篇 manipulators

机构

  • 4 篇 computational le...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 max planck insti...
  • 2 篇 department of co...
  • 2 篇 dept of computer...
  • 2 篇 dept of medicine...
  • 1 篇 department of ps...
  • 1 篇 school of cognit...
  • 1 篇 department of ps...
  • 1 篇 neural basis of ...
  • 1 篇 school of mathem...
  • 1 篇 informatics univ...
  • 1 篇 dept of brain an...
  • 1 篇 sorbonne univers...
  • 1 篇 sapienza univers...
  • 1 篇 department of ra...
  • 1 篇 laboratory for c...
  • 1 篇 centre for neura...
  • 1 篇 department of ps...

作者

  • 6 篇 schaal stefan
  • 2 篇 evangelos theodo...
  • 2 篇 theodorou evange...
  • 2 篇 krause andreas
  • 2 篇 marco alonso
  • 2 篇 ijspeert auke
  • 2 篇 schoellig angela...
  • 2 篇 hennig philipp
  • 2 篇 trimpe sebastian
  • 2 篇 berkenkamp felix
  • 1 篇 xiao-fei hu
  • 1 篇 jia-wei sun
  • 1 篇 pappalardo franc...
  • 1 篇 jian wang
  • 1 篇 wang da-hui
  • 1 篇 emmert-streib fr...
  • 1 篇 hu liu
  • 1 篇 mcclean paula l.
  • 1 篇 james schummers
  • 1 篇 xia wu

语言

  • 19 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control Laboratory in Computer Science"
20 条 记 录,以下是1-10 订阅
排序:
A hybrid monotone decision tree model for interval-valued attributes
收藏 引用
Advances in computational Intelligence 2021年 第1期2卷 1-11页
作者: Chen, Jiankai Li, Zhongyan Wang, Xin Zhai, Junhai School of Control and Computer Engineering North China Electric Power University Beijing China Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding China School of Mathematics and Physics North China Electric Power University Beijing China
The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas oth...
来源: 评论
An Early Stage Researcher's Primer on Systems Medicine Terminology
Network and Systems Medicine
收藏 引用
Network and Systems Medicine 2021年 第1期4卷 2-50页
作者: Zanin, Massimiliano Aitya, Nadim A.A. Basilio, José Baumbach, Jan Benis, Arriel Behera, Chandan K. Bucholc, Magda Castiglione, Filippo Chouvarda, Ioanna Comte, Blandine Dao, Tien-Tuan Ding, Xuemei Pujos-Guillot, Estelle Filipovic, Nenad Finn, David P. Glass, David H. Harel, Nissim Iesmantas, Tomas Ivanoska, Ilinka Joshi, Alok Boudjeltia, Karim Zouaoui Kaoui, Badr Kaur, Daman Maguire, Liam P. McClean, Paula L. McCombe, Niamh De Miranda, João Luís Moisescu, Mihnea Alexandru Pappalardo, Francesco Polster, Annikka Prasad, Girijesh Rozman, Damjana Sacala, Ioan Sanchez-Bornot, Jose M. Schmid, Johannes A. Sharp, Trevor Solé-Casals, Jordi Spiwok, Vojtěch Spyrou, George M. Stalidzans, Egils Stres, Blaa Sustersic, Tijana Symeonidis, Ioannis Tieri, Paolo Todd, Stephen Van Steen, Kristel Veneva, Milena Wang, Da-Hui Wang, Haiying Wang, Hui Watterson, Steven Wong-Lin, Kongfatt Yang, Su Zou, Xin Schmidt, Harald H.H.W. Centro de Tecnología Biomédica Universidad Politécnica de Madrid Madrid Spain Intelligent Systems Research Centre School of Computing Engineering and Intelligent Systems Ulster University Ulster United Kingdom Center for Physiology and Pharmacology Institute of Vascular Biology and Thrombosis Research Medical University of Vienna Vienna Austria TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany Holon Israel CNR National Research Council IAC Institute for Applied Computing Rome Italy Lab of Computing Medical Informatics and Biomedical Imaging Technologies School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece Université Clermont Auvergne INRAE UNH Plateforme d'Exploration du Métabolisme MetaboHUB Clermont Clermont-Ferrand France Université de Technologie de Compiègne Compiègne France Labex MS2T Control of Technological Systems-of-Systems CNRS and Université de Technologie de Compiègne Compiègne France Faculty of Engineering University of Kragujevac Kragujevac Serbia Kragujevac Serbia Steinbeis Advanced Risk Technologies Institute Doo Kragujevac Kragujevac Serbia Pharmacology and Therapeutics School of Medicine Galway Neuroscience Centre National University of Ireland Galway Ireland School of Computing Ulster University Ulster United Kingdom Holon Israel Department of Mathematics and Natural Sciences Kaunas University of Technology Kaunas Lithuania Faculty of Computer Science and Engineering Ss. Cyril and Methodius University Skopje Macedonia Medicine Faculty Université Libre de Bruxelles CHU de Charleroi Charleroi Belgium Northern Ireland Centre for Stratified Medicine Biomedical Sciences Research Institute Ulster University Ulster United Kingdom Escola Superior de Tecnologia e Gestão Instituto Politécnico de Portalegre Portalegre Portugal Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal Faculty of Automatic Control and Computers University Politehnica of B
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, ... 详细信息
来源: 评论
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
Virtual vs. real: Trading off simulations and physical exper...
收藏 引用
2017 IEEE International Conference on Robotics and Automation, ICRA 2017
作者: Marco, Alonso Berkenkamp, Felix Hennig, Philipp Schoellig, Angela P. Krause, Andreas Schaal, Stefan Trimpe, Sebastian Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science ETH Zurich Switzerland Canada Computational Learning and Motor Control Lab University of Southern California United States Max Planck ETH Center for Learning Systems Tubingen Germany Zurich Switzerland
In practice, the parameters of control policies are often tuned manually. This is time-consuming and frustrating. Reinforcement learning is a promising alternative that aims to automate this process, yet often require... 详细信息
来源: 评论
Small P values may not yield robust findings:an example using REST-meta-PD
收藏 引用
science Bulletin 2021年 第21期66卷 2148-2152,M0003页
作者: Xi-Ze Jia Na Zhao Hao-Ming Dong Jia-Wei Sun Marek Barton Roxana Burciu Nicolas Carrière Antonio Cerasa Bo-Yu Chen Jun Chen Stephen Coombes Luc Defebvre Christine Delmaire Kathy Dujardin Fabrizio Esposito Guo-Guang Fan Federica Di Nardo Yi-Xuan Feng Brett W.Fling Saurabh Garg Moran Gilat Martin Gorges Shu-Leong Ho Fay BHorak Xiao Hu Xiao-Fei Hu Biao Huang Pei-Yu Huang Ze-Juan Jia Christina Jones Jan Kassubek Lenka Krajcovicova Ajay Kurani Jing Li Qing Li Ai-Ping Liu Bo Liu Hu Liu Wei-Guo Liu Renaud Lopes Yu-Ting Lou Wei Luo Tara Madhyastha Ni-Ni Mao Grainne McAlonan Martin J.McKeown Shirley Pang Andrea Quattrone Irena Rektorova Alessia Sarica Hui-Fang Shang James M.Shine Priyank Shukla Tomas Slavicek Xiao-Peng Song Gioacchino Tedeschi Alessandro Tessitore David Vaillancourt Jian Wang Jue Wang Z.Jane Wang Lu-Qing Wei Xia Wu Xiao-Jun Xu Lei Yan Jing Yang Wan-Qun Yang Nai-Lin Yao De-Long Zhang Jiu-Quan Zhang Min-Ming Zhang Yan-Ling Zhang Cai-Hong Zhou Chao-Gan Yan Xi-Nian Zuo Mark Hallett Tao Wu Yu-Feng Zang Center for Cognition and Brain Disorders the Affiliated HospitalHangzhou Normal UniversityHangzhou 310015China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou 311121China National Basic Science Data Center Beijing 100190China State Key Laboratory of Cognitive Neuroscience and Learning&McGovern Institute for Brain Research Beijing Normal UniversityBeijing 100875China School of Information and Electronics Technology Jiamusi UniversityJiamusi 154007China Neuroscience Program Central European Institute of TechnologyCEITECMasaryk UniversityBrno 62500Czech Republic Department of Applied Physiology and Kinesiology University of FloridaGainesville FL 32611USA Univ.Lille InsermCHU LilleU1172-LilNCog-Lille Neuroscience&CognitionLille F-59000France The Institute for Biomedical Research and Innovation National Research CouncilMangone CS 87050Italy Department of Radiology The First Affiliated Hospital of China Medical UniversityShenyang 110001China Department of Radiology Guangdong Provincial Hospital of Chinese MedicineGuangzhou 510120China Department of Medicine Surgery and DentistryScuola Medica SalernitanaUniversity of SalernoFiscianoSA 132-84084Italy Department of Advanced Medical and Surgery Sciences University of Campania“Luigi Vanvitelli”Caserta 81100Italy Eye Center of the 2nd Affiliated Hospital Medical College of Zhejiang UniversityHangzhou 310020China Zhejiang Provincial Key Lab of Ophthalmology Hangzhou 310020China Department of Health and Exercise Science Colorado State UniversityFort Collins CO 80523USA Pacific Parkinson’s Research Centre University of British ColumbiaVancouver BC V6E 2M6Canada Department of Medicine(Neurology)University of British Columbia Vancouver BC V6T 1B7Canada Brain and Mind Center The University of SydneySydney NSW 2006Australia Department of Neurology Ulm UniversityUlm 89081Germany Division of Neurology Department of MedicineQueen Mary HospitalUniversity of Hong KongHong Kong 999077China Department of
Thousands of resting state functional magnetic resonance imaging(RS-f MRI)articles have been published on brain *** precise localization of abnormal brain activity,a voxel-level comparison is *** of the large number o... 详细信息
来源: 评论
Combining learned and analytical models for predicting action effects from sensory data
arXiv
收藏 引用
arXiv 2017年
作者: Kloss, Alina Schaal, Stefan Bohg, Jeannette Autonomous Motion Department Max Planck Institute for Intelligent Systems Germany Computational Learning and Motor Control Lab University of Southern California United States Department of Computer Science Stanford University United States
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally... 详细信息
来源: 评论
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement learning with Bayesian Optimization
arXiv
收藏 引用
arXiv 2017年
作者: Marco, Alonso Berkenkamp, Felix Hennig, Philipp Schoellig, Angela P. Krause, Andreas Schaal, Stefan Trimpe, Sebastian Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science ETH Zurich Switzerland Canada Computational Learning and Motor Control Lab University of Southern California United States Max Planck ETH Center for Learning Systems Tübingen Germany Max Planck ETH Center for Learning Systems Zürich Switzerland
— In practice, the parameters of control policies are often tuned manually. This is time-consuming and frustrating. Reinforcement learning is a promising alternative that aims to automate this process, yet often requ... 详细信息
来源: 评论
Quantitative graph theory: A new branch of graph theory and network science
arXiv
收藏 引用
arXiv 2017年
作者: Dehmer, Matthias Emmert-Streib, Frank Shi, Yongtang Department of Computer Science Universität der Bundeswehr München Germany Department of Mechatronics and Biomedical Computer Science UMIT Hall in Tyrol Austria Computational Medicine and Statistical Learning Laboratory Department of Signal Processing Tampere University of Technology Finland Institute of Biosciences and Medical Technology Tampere33520 Finland Center for Combinatorics and LPMC-TJKLC Nankai University Tianjin300071 China College of Computer and Control Engineering Nankai University Tianjin300071 China
In this paper, we describe quantitative graph theory and argue it is a new graph-theoretical branch in network science, however, with significant different features compared to classical graph theory. The main goal of... 详细信息
来源: 评论
26th Annual computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROscience 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Hypothesis testing framework for active object detection
Hypothesis testing framework for active object detection
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Nikolay Atanasov Bharath Sankaran Jerome Le Ny Thomas Koletschka George J. Pappas Kostas Daniilidis Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA USA Computational Learning and Motor Control Laboratory University of Southern California Los Angeles CA USA Department of Electrical Engineering Ecole Polytechnique de Montreal QUE Canada Department of Computer and Information Science University of Pennsylvania Philadelphia PA USA
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and it... 详细信息
来源: 评论
Movement segmentation and recognition for imitation learning  15
Movement segmentation and recognition for imitation learning
收藏 引用
15th International Conference on Artificial Intelligence and Statistics, AISTATS 2012
作者: Meier, Franziska Theodorou, Evangelos Schaal, Stefan Computational Learning and Motor Control Lab University of Southern California Los Angeles United States Department of Computer Science and Engineering University of Washington Seattle United States Max-Planck-Institute for Intelligent Systems Tübingen Germany
In human movement learning, it is most common to teach constituent elements of complex movements in isolation, before chaining them into complex movements. Segmentation and recognition of observed movement could thus ... 详细信息
来源: 评论