咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 控制科学与工程
    • 13 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 9 篇 系统科学
    • 7 篇 数学
    • 7 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 dynamics
  • 5 篇 force
  • 5 篇 robots
  • 5 篇 humanoid robots
  • 4 篇 computational mo...
  • 3 篇 tuning
  • 3 篇 reinforcement le...
  • 3 篇 state estimation
  • 3 篇 anthropomorphic ...
  • 3 篇 data models
  • 3 篇 standards
  • 3 篇 joints
  • 3 篇 controllers
  • 2 篇 legged locomotio...
  • 2 篇 robot
  • 2 篇 humanoid
  • 2 篇 friction
  • 2 篇 training data
  • 2 篇 three-dimensiona...

机构

  • 7 篇 autonomous motio...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 5 篇 computational le...
  • 5 篇 max planck insti...
  • 4 篇 bosch center for...
  • 4 篇 computational le...
  • 4 篇 computational le...
  • 2 篇 tandon school of...
  • 2 篇 computational le...
  • 2 篇 department of ad...
  • 2 篇 computational le...
  • 2 篇 autonomous motio...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 autonomous motio...
  • 2 篇 department of co...
  • 2 篇 autonomous motio...
  • 2 篇 max-planck-insti...

作者

  • 25 篇 stefan schaal
  • 18 篇 schaal stefan
  • 10 篇 ludovic righetti
  • 6 篇 nicholas rotella
  • 6 篇 righetti ludovic
  • 6 篇 trimpe sebastian
  • 6 篇 jeannette bohg
  • 5 篇 marco alonso
  • 4 篇 evangelos theodo...
  • 4 篇 theodorou evange...
  • 4 篇 sean mason
  • 4 篇 stulp freek
  • 4 篇 buchli jonas
  • 3 篇 sebastian trimpe
  • 3 篇 franziska meier
  • 3 篇 philipp hennig
  • 3 篇 doerr andreas
  • 3 篇 rotella nicholas
  • 3 篇 nguyen-tuong duy
  • 3 篇 daniel kappler

语言

  • 47 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control lab"
48 条 记 录,以下是11-20 订阅
排序:
Editorial
收藏 引用
International Journal of Humanoid Robotics 2005年 第4期2卷 389-390页
作者: CHENG, GORDON SCHAAL, STEFAN ATKESON, CHRISTOPHER G. JST-ICORP Computational Brain Project ATR Computational Neuroscience Laboratory 2-2-2 Keihanna Science City Soraku-gun Kyoto619-0288 Japan Computational Learning and Motor Control Lab University of Southern California Hedco Neurosciences Building HNB-103 3641 Watt Way Los AngelesCA90089-2520 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States
来源: 评论
Movement segmentation and recognition for imitation learning  15
Movement segmentation and recognition for imitation learning
收藏 引用
15th International Conference on Artificial Intelligence and Statistics, AISTATS 2012
作者: Meier, Franziska Theodorou, Evangelos Schaal, Stefan Computational Learning and Motor Control Lab University of Southern California Los Angeles United States Department of Computer Science and Engineering University of Washington Seattle United States Max-Planck-Institute for Intelligent Systems Tübingen Germany
In human movement learning, it is most common to teach constituent elements of complex movements in isolation, before chaining them into complex movements. Segmentation and recognition of observed movement could thus ... 详细信息
来源: 评论
An Iterative Path Integral Stochastic Optimal control Approach for learning Robotic Tasks
收藏 引用
IFAC Proceedings Volumes 2011年 第1期44卷 11594-11601页
作者: Evangelos Theodorou Freek Stulp Jonas Buchli Stefan Schaal Computational Learning and Motor Control Lab University of Southern California USA Department of Advanced Robotics Italian Institute of Technology ATR Computational Neuroscience Laboratories Kyoto 619-0288 Japan
Abstract Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spa... 详细信息
来源: 评论
Model-based policy search for automatic tuning of multivariate PID controllers
Model-based policy search for automatic tuning of multivaria...
收藏 引用
2017 IEEE International Conference on Robotics and Automation, ICRA 2017
作者: Doerr, Andreas Nguyen-Tuong, Duy Marco, Alonso Schaal, Stefan Trimpe, Sebastian Bosch Center for Artificial Intelligence Renningen Germany Autonomous Motion Department Max Planck Institute for Intelligent Systems Tübingen Germany Computational Learning and Motor Control Lab University of Southern California Los AngelesCA United States
PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILC... 详细信息
来源: 评论
Stochastic differential dynamic programming
Stochastic differential dynamic programming
收藏 引用
作者: Theodorou, Evangelos Tassa, Yuval Todorov, Emo Departments of Computer Science and Neuroscience Computational Learning and Motor Control Lab. University of Southern California United States Interdisciplinary Center for Neural Computation Hebrew University Jerusalem Israel Department of Computer Science and Engineering University of Washington Seattle WA United States
Although there has been a significant amount of work in the area of stochastic optimal control theory towards the development of new algorithms, the problem of how to control a stochastic nonlinear system remains an o... 详细信息
来源: 评论
Unsupervised Contact learning for Humanoid Estimation and control
Unsupervised Contact Learning for Humanoid Estimation and Co...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Nicholas Rotella Stefan Schaal Ludovic Righetti Computational Learning and Motor Control Lab University of Southern California Los Angeles California New York University New York New York
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive se... 详细信息
来源: 评论
On the Design of LQR Kernels for Efficient controller learning
On the Design of LQR Kernels for Efficient Controller Learni...
收藏 引用
IEEE Annual Conference on Decision and control
作者: Alonso Marco Philipp Hennig Stefan Schaal Sebastian Trimpe Max Planck Institute for Intelligent Systems Tübingen Germany Computational Learning and Motor Control Lab University of Southern California Los Angeles USA
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trial... 详细信息
来源: 评论
An MPC Walking Framework With External Contact Forces
An MPC Walking Framework With External Contact Forces
收藏 引用
IEEE International Conference on Robotics and Automation
作者: Sean Mason Nicholas Rotella Stefan Schaal Ludovic Righetti Computational Learning and Motor Control Lab University of Southern California Los Angeles California Tandon School of Engineering New York University New York USA
In this work, we present an extension to a linear Model Predictive control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To ... 详细信息
来源: 评论
control of legged robots with optimal distribution of contact forces
Control of legged robots with optimal distribution of contac...
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Righetti, Ludovic Buchli, Jonas Mistry, Michael Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States Max Planck Institute for Intelligent Systems Tübingen Germany Dept. of Advanced Robotics Italian Institute of Technology Genoa Italy Disney Research Pittsburgh Pittsburgh PA 15213 United States
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of cruc... 详细信息
来源: 评论
On the design of LQR kernels for efficient controller learning
arXiv
收藏 引用
arXiv 2017年
作者: Marco, Alonso Hennig, Philipp Schaal, Stefan Trimpe, Sebastian Max Planck Institute for Intelligent Systems Tübingen72076 Germany Computational Learning and Motor Control Lab University of Southern California Los Angeles United States
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trial... 详细信息
来源: 评论