咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 控制科学与工程
    • 13 篇 机械工程
    • 10 篇 仪器科学与技术
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 16 篇 理学
    • 9 篇 系统科学
    • 7 篇 数学
    • 7 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 7 篇 trajectory
  • 6 篇 dynamics
  • 5 篇 force
  • 5 篇 robots
  • 5 篇 humanoid robots
  • 4 篇 computational mo...
  • 3 篇 tuning
  • 3 篇 reinforcement le...
  • 3 篇 state estimation
  • 3 篇 anthropomorphic ...
  • 3 篇 data models
  • 3 篇 standards
  • 3 篇 joints
  • 3 篇 controllers
  • 2 篇 legged locomotio...
  • 2 篇 robot
  • 2 篇 humanoid
  • 2 篇 friction
  • 2 篇 training data
  • 2 篇 three-dimensiona...

机构

  • 7 篇 autonomous motio...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 6 篇 computational le...
  • 5 篇 computational le...
  • 5 篇 max planck insti...
  • 4 篇 bosch center for...
  • 4 篇 computational le...
  • 4 篇 computational le...
  • 2 篇 tandon school of...
  • 2 篇 computational le...
  • 2 篇 department of ad...
  • 2 篇 computational le...
  • 2 篇 autonomous motio...
  • 2 篇 computational le...
  • 2 篇 interdisciplinar...
  • 2 篇 autonomous motio...
  • 2 篇 department of co...
  • 2 篇 autonomous motio...
  • 2 篇 max-planck-insti...

作者

  • 25 篇 stefan schaal
  • 18 篇 schaal stefan
  • 10 篇 ludovic righetti
  • 6 篇 nicholas rotella
  • 6 篇 righetti ludovic
  • 6 篇 trimpe sebastian
  • 6 篇 jeannette bohg
  • 5 篇 marco alonso
  • 4 篇 evangelos theodo...
  • 4 篇 theodorou evange...
  • 4 篇 sean mason
  • 4 篇 stulp freek
  • 4 篇 buchli jonas
  • 3 篇 sebastian trimpe
  • 3 篇 franziska meier
  • 3 篇 philipp hennig
  • 3 篇 doerr andreas
  • 3 篇 rotella nicholas
  • 3 篇 nguyen-tuong duy
  • 3 篇 daniel kappler

语言

  • 47 篇 英文
  • 1 篇 中文
检索条件"机构=Computational Learning and Motor Control lab"
48 条 记 录,以下是31-40 订阅
排序:
Robot arm pose estimation through pixel-wise part classification
Robot arm pose estimation through pixel-wise part classifica...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Jeannette Bohg Javier Romero Alexander Herzog Stefan Schaal Autonomous Motion Department Perceiving Systems Max-Planck-Institute for Intelligent Systems Tübingen Germany Computational Learning and Motor Control lab University of Southern California Los Angeles CA USA
We propose to frame the problem of marker-less robot arm pose estimation as a pixel-wise part classification problem. As input, we use a depth image in which each pixel is classified to be either from a particular rob... 详细信息
来源: 评论
State Estimation for a Humanoid Robot
State Estimation for a Humanoid Robot
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Nicholas Rotella Michael Bloesch Ludovic Righetti Stefan Schaal Computational Learning and Motor Control Lab University of Southern California Los Angeles California Autonomous Systems Lab ETH Zurich Zurich Switzerland Autonomous Motion Department Max Planck Institute for Intelligent Systems Tuebingen Germany
This paper introduces a framework for state estimation on a humanoid robot platform using only common proprioceptive sensors and knowledge of leg kinematics. The presented approach extends that detailed in prior work ... 详细信息
来源: 评论
Toward simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitives
Toward simple control for complex, autonomous robotic applic...
收藏 引用
作者: Degallier, Sarah Righetti, Ludovic Gay, Sebastien Ijspeert, Auke CNBI Laboratory School of Engineering EPFL Ecole Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland Biorobotics Laboratory School of Engineering EPFL Ecole Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland Computational Learning and Motor Control Lab Computer Science Neurosciences and Biomedical Engineering University of Southern California Los Angeles CA 90089 United States
Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approa... 详细信息
来源: 评论
Combining learned and analytical models for predicting action effects from sensory data
arXiv
收藏 引用
arXiv 2017年
作者: Kloss, Alina Schaal, Stefan Bohg, Jeannette Autonomous Motion Department Max Planck Institute for Intelligent Systems Germany Computational Learning and Motor Control Lab University of Southern California United States Department of Computer Science Stanford University United States
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally... 详细信息
来源: 评论
Encoding of periodic and their transient motions by a single dynamic movement primitive
Encoding of periodic and their transient motions by a single...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Johannes Ernesti Ludovic Righetti Martin Do Tamim Asfour Stefan Schaal Karlsruher Institut fur Technologie Karlsruhe Baden-Württemberg DE Computational Learning and Motor Control Lab University of Southern California Los Angeles California Institute for Anthropomatics Karlsruhe Institute of Technology Germany
Present formulations of periodic dynamic movement primitives (DMPs) do not encode the transient behavior required to start the rhythmic motion, although these transient movements are an important part of the rhythmic ...
来源: 评论
Drifting Gaussian processes with varying neighborhood sizes for online model learning
Drifting Gaussian processes with varying neighborhood sizes ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Franziska Meier Stefan Schaal Max-Planck-Institute for Intelligent Systems Tübingen Germany Computational Learning and Motor Control Lab University of Southern California Los Angeles CA USA University of Southern California Los Angeles CA US
computationally efficient online learning of non-stationary models remains a difficult challenge. A robust and reliable algorithm could have great impact on problems in learning control. Recent work on combining the w... 详细信息
来源: 评论
Robot arm pose estimation by pixel-wise regression of joint angles
Robot arm pose estimation by pixel-wise regression of joint ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Felix Widmaier Daniel Kappler Stefan Schaal Jeannette Bohg Autonomous Motion Department Max-Planck-Institute for Intelligent Systems Tübingen Germany Karls University of Tübingen Germany Computational Learning and Motor Control lab at the University of Southern California Los Angeles CA USA
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encod... 详细信息
来源: 评论
Surface tilt perception with a biomimetic tactile sensor
Surface tilt perception with a biomimetic tactile sensor
收藏 引用
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
作者: Zhe Su Stefan Schaal Gerald E. Loeb Computational Learning and Motor Control Lab University of Southern California Los Angeles CA USA Autonomous Motion Department Max-Planck Institute for Intelligent Systems Tubingen Germany SynTouch LLC Los Angeles CA USA
Humans are known to be good at manipulating tools. To cope with disturbances and uncertainties from the external environment during such tasks, they must be able to perceive small changes in orientation or tilt of the... 详细信息
来源: 评论
Model-based policy search for automatic tuning of multivariate PID controllers
Model-based policy search for automatic tuning of multivaria...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Andreas Doerr Duy Nguyen-Tuong Alonso Marco Stefan Schaal Sebastian Trimpe Autonomous Motion Department at the Max Planck Institute for Intelligent Systems Tübingen Germany Bosch Center for Artificial Intelligence Renningen Germany Computational Learning and Motor Control lab at the University of Southern California Los Angeles CA USA
PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILC... 详细信息
来源: 评论
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement learning with Bayesian Optimization
arXiv
收藏 引用
arXiv 2017年
作者: Marco, Alonso Berkenkamp, Felix Hennig, Philipp Schoellig, Angela P. Krause, Andreas Schaal, Stefan Trimpe, Sebastian Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science ETH Zurich Switzerland Canada Computational Learning and Motor Control Lab University of Southern California United States Max Planck ETH Center for Learning Systems Tübingen Germany Max Planck ETH Center for Learning Systems Zürich Switzerland
— In practice, the parameters of control policies are often tuned manually. This is time-consuming and frustrating. Reinforcement learning is a promising alternative that aims to automate this process, yet often requ... 详细信息
来源: 评论