The dislocation skin effect exhibits the capacity of topological defects to trap an extensive number of modes in two-dimensional non-Hermitian systems. Similar to the corresponding skin effects caused by system bounda...
详细信息
The dislocation skin effect exhibits the capacity of topological defects to trap an extensive number of modes in two-dimensional non-Hermitian systems. Similar to the corresponding skin effects caused by system boundaries, this phenomenon also originates from nontrivial topology. However, finding the relationship between the dislocation skin effect and nonzero topological invariants, especially in disordered systems, can be obscure and challenging. Here, we introduce a real-space topological invariant based on the spectral localizer to characterize the skin effect on two-dimensional lattices. We demonstrate that this invariant consistently predicts the occurrence and location of both boundary and dislocation skin effects, offering a unified approach applicable to both ordered and disordered systems. Our work demonstrates a general approach that can be utilized to diagnose the topological nature of various types of skin effects, particularly in the absence of translational symmetry when momentum-space descriptions are inapplicable.
Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible...
详细信息
Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible light. In this work, novel ternary 2D/3D/2D MoS2-In2O3-WS2 multi-nanostructures were synthesized using facile hydrothermal processes. XRD, FTIR, and XPS results confirmed the phase, functional groups, and element composition of pure MoS2, MoS2-In2O3 and MoS2-In2O3-WS2 hybrids. UV-DRS spectra of the MoS2-In2O3-WS2 ternary hybrid indicate maximum absorption in the visible light range with a band-gap energy value of 2.4 eV. The surface of the 2D WS2 nanosheet structure tightly blends and densely disperses 2D MoS2 nanosheets and 3D In2O3 nanocubes. This confirmed the formation of the MoS2-In2O3-WS2 ternary hybrid in the form of 2D/3D/2D multi-nanostructures, which is also indicated from SEM and HR-TEM images. The synthesized MoS2-In2O3-WS2 ternary hybrid showed maximum photocatalytic activity under visible-light for antimicrobial agents such as triclosan (TCS) and trichlorocarban (TCC). The photocatalytic activity of TCS was revealed to be 95% at 90 min, while that of TCC was 93% at 100 min. The reusability and stability tests of the prepared MoS2-In2O3-WS2 ternary hybrid after four consecutive photocatalytic cycles were analyzed by FTIR and SEM, which indicated that the prepared ternary hybrid was very stable. Overall results suggested that the developed MoS2-In2O3-WS2 (2D/3D/2D) multi-nanostructures are environmentally friendly and low-cost nanocomposites as a poten
The dislocation skin effect exhibits the capacity of topological defects to trap an extensive number of modes in two-dimensional non-Hermitian systems. Similar to the corresponding skin effects caused by system bounda...
详细信息
Polarization switching in ferroelectric polymers is studied using a multiscale framework. A continuum Landau-Ginzburg-Devonshire model for a first-order phase transition is parametrized for ideal all trans chains of P...
Polarization switching in ferroelectric polymers is studied using a multiscale framework. A continuum Landau-Ginzburg-Devonshire model for a first-order phase transition is parametrized for ideal all trans chains of P(VDF-TrFE) (70:30) copolymers using data obtained from molecular-dynamics (MD) simulations. Thermal fluctuations and kinetics are accounted for by using a time-dependent Ginzburg-Landau model where the length and time scales, as well as the thermal noise amplitude, are also set from MD simulations. This method is used to investigate the nature of polarization switching in ferroelectric polymers and to test recent claims that ultrathin ferroelectric polymer films undergo intrinsic switching. Our simulations show that for a defect-free system, domain nucleation due to thermal fluctuations prevents homogeneous switching of the polarization, even at very small thicknesses. However, this nucleation does not substantially decrease the coercive field compared to the intrinsic value.
暂无评论