咨询与建议

限定检索结果

文献类型

  • 463 篇 期刊文献
  • 61 篇 会议

馆藏范围

  • 524 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 340 篇 理学
    • 117 篇 物理学
    • 99 篇 生物学
    • 98 篇 数学
    • 59 篇 化学
    • 54 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 16 篇 地球物理学
    • 14 篇 天文学
  • 304 篇 工学
    • 112 篇 计算机科学与技术...
    • 93 篇 软件工程
    • 49 篇 化学工程与技术
    • 49 篇 生物工程
    • 48 篇 生物医学工程(可授...
    • 39 篇 材料科学与工程(可...
    • 38 篇 电子科学与技术(可...
    • 31 篇 力学(可授工学、理...
    • 30 篇 电气工程
    • 25 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 21 篇 光学工程
    • 15 篇 动力工程及工程热...
    • 14 篇 仪器科学与技术
    • 14 篇 环境科学与工程(可...
    • 13 篇 冶金工程
  • 70 篇 医学
    • 46 篇 临床医学
    • 40 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 38 篇 农学
    • 17 篇 作物学
  • 37 篇 管理学
    • 20 篇 管理科学与工程(可...
  • 4 篇 经济学
  • 3 篇 法学
  • 2 篇 文学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 13 篇 machine learning
  • 10 篇 gravitational wa...
  • 7 篇 deep learning
  • 6 篇 density function...
  • 5 篇 cancer
  • 5 篇 galaxies
  • 5 篇 diffusion
  • 5 篇 mean square erro...
  • 5 篇 fluid structure ...
  • 5 篇 diseases
  • 5 篇 gravitational wa...
  • 5 篇 molecular dynami...
  • 5 篇 dynamics
  • 4 篇 speech
  • 4 篇 computational mo...
  • 4 篇 gene expression
  • 4 篇 tumors
  • 4 篇 gravitational wa...
  • 3 篇 x ray crystallog...
  • 3 篇 metabolomics

机构

  • 17 篇 applied mathemat...
  • 15 篇 institute for pl...
  • 14 篇 university of so...
  • 13 篇 department of ph...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 infn trento inst...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...

作者

  • 23 篇 jasra ajay
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 p. fritschel
  • 12 篇 c. kim
  • 12 篇 f. muciaccia
  • 12 篇 b. garaventa
  • 12 篇 d. p. kapasi

语言

  • 500 篇 英文
  • 20 篇 其他
  • 3 篇 中文
  • 1 篇 西班牙文
检索条件"机构=Computational Sciences and Engineering Program"
524 条 记 录,以下是191-200 订阅
排序:
Size-controlled immunomodulatory and vaccine adjuvant potentials of self-assembled hyaluronic acid nanoparticles: Activation and recruitment of immune cells
收藏 引用
International Journal of Biological Macromolecules 2025年 314卷 144265页
作者: Chu, Po-Cheng Birhan, Yihenew Simegniew Zhao, Min-Han Syu, Wei-Jhe Chen, Po-Yen Lin, Yu-Tsen Lai, Ping-Shan Department of Chemistry National Chung Hsing University Taichung402 Taiwan Basic Research and Development Department Powin Biomedical Co. Ltd. Taichung428 Taiwan Department of Chemistry College of Natural and Computational Sciences Debre Markos University P.O. Box 269 Debre Markos Ethiopia Department of Chemical and Biomolecular Engineering University of Maryland College Park MD20742 United States Ph.D. Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung402 Taiwan
Immunotherapy has paramount importance in treating chronic immune diseases, and vaccine development. Hyaluronic acid (HA) has been shown to elicit molecular weight-related distinct immune responses. Nonetheless, the p... 详细信息
来源: 评论
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Jae H. Griffith, Boyce E. Department of Mathematics University of North Carolina Chapel HillNC United States Department of Mechanical Engineering Johns Hopkins University BaltimoreMD United States Institute for Computational Medicine Johns Hopkins University BaltimoreMD United States Departments of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina School of Medicine Chapel HillNC United States McAllister Heart Institute University of North Carolina School of Medicine Chapel HillNC United States
The immersed boundary (IB) method is a non-body conforming approach to fluid-structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and incompressibility of a coupled fluid-structure... 详细信息
来源: 评论
Exponential acceleration of macroscopic quantum tunneling in a Floquet Ising model
arXiv
收藏 引用
arXiv 2023年
作者: Grattan, George Barton, Brandon A. Feeney, Sean Mossi, Gianni Patnaik, Pratik Sagal, Jacob C. Carr, Lincoln D. Oganesyan, Vadim Kapit, Eliot Quantum Engineering Program Colorado School of Mines 1523 Illinois St CO Golden80401 United States Department of Computer Science Colorado School of Mines 1500 Illinois St CO Golden80401 United States Department of Applied Mathematics and Statistics Colorado School of Mines 1500 Illinois St CO Golden80401 United States Department of Physics Colorado School of Mines 1523 Illinois St CO Golden80401 United States KBR Inc. 601 Jefferson St. HoustonTX77002 United States NASA Ames Research Center Moffett FieldCA94035 United States Department of Physics and Astronomy College of Staten Island CUNY Staten IslandNY10314 United States Physics program and Initiative for the Theoretical Sciences The Graduate Center CUNY New YorkNY10016 United States Center for Computational Quantum Physics Flatiron Institute 162 5th Avenue New YorkNY10010 United States
The exponential suppression of macroscopic quantum tunneling (MQT) in the number of elements to be reconfigured is an essential element of broken symmetry phases. Slow MQT is also a core bottleneck in quantum algorith... 详细信息
来源: 评论
Concurrency measures in the era of temporal network epidemiology: A review
arXiv
收藏 引用
arXiv 2020年
作者: Masuda, Naoki Miller, Joel C. Holme, Petter Department of Mathematics State University of New York Buffalo United States Computational and Data-Enabled Science and Engineering Program State University of New York Buffalo United States School of Engineering and Mathematical Sciences La Trobe University Australia Institute of Innovative Research Tokyo Institute of Technology Yokohama226-8503 Japan
Diseases spread over temporal networks of interaction events between individuals. Structures of these temporal networks hold the keys to understanding epidemic propagation. One early concept of the literature to aid i... 详细信息
来源: 评论
Assessing Engraftment Following Fecal Microbiota Transplant
arXiv
收藏 引用
arXiv 2024年
作者: Herman, Chloe Barker, Bridget M. Bartelli, Thais F. Chandra, Vidhi Krajmalnik-Brown, Rosa Jewell, Mary Li, Le Liao, Chen McAllister, Florencia Nirmalkar, Khemlal Xavier, Joao B. Caporaso, J. Gregory Pathogen and Microbiome Institute Northern Arizona University FlagstaffAZ United States School of Informatics Computing and Cyber Systems Northern Arizona University FlagstaffAZ United States Department of Clinical Cancer Prevention University of Texas MD Anderson Cancer Center HoustonTX United States Biodesign Center for Health Through Microbiomes Arizona State University TempeAZ United States School of Sustainable Engineering and the Built Environment Arizona State University TempeAZ United States Independent author Salt Lake CityUT United States Program for Computational and Systems Biology Memorial Sloan-Kettering Cancer Center New YorkNY United States Department of Gastrointestinal Medical Oncology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Immunology The University of Texas MD Anderson Cancer Center HoustonTX United States Department of Biological Sciences Northern Arizona University FlagstaffAZ United States
Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorde... 详细信息
来源: 评论
Scientific discovery in the age of artificial intelligence
收藏 引用
NATURE 2023年 第7978期621卷 E33-E33页
作者: Wang, Hanchen Fu, Tianfan Du, Yuanqi Gao, Wenhao Huang, Kexin Liu, Ziming Chandak, Payal Liu, Shengchao Van Katwyk, Peter Deac, Andreea Anandkumar, Anima Bergen, Karianne Gomes, Carla P. Ho, Shirley Kohli, Pushmeet Lasenby, Joan Leskovec, Jure Liu, Tie-Yan Manrai, Arjun Marks, Debora Ramsundar, Bharath Song, Le Sun, Jimeng Tang, Jian Velickovic, Petar Welling, Max Zhang, Linfeng Coley, Connor W. Bengio, Yoshua Zitnik, Marinka Department of Engineering University of Cambridge Cambridge UK Department of Computing and Mathematical Sciences California Institute of Technology Pasadena CA USA NVIDIA Santa Clara CA USA Department of Computational Science and Engineering Georgia Institute of Technology Atlanta GA USA Department of Computer Science Cornell University Ithaca NY USA Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA USA Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA Department of Computer Science Stanford University Stanford CA USA Department of Physics Massachusetts Institute of Technology Cambridge MA USA Harvard-MIT Program in Health Sciences and Technology Cambridge MA USA Mila – Quebec AI Institute Montreal Quebec Canada Université de Montréal Montreal Quebec Canada HEC Montréal Montreal Quebec Canada CIFAR AI Chair Toronto Ontario Canada Department of Earth Environmental and Planetary Sciences Brown University Providence RI USA Data Science Institute Brown University Providence RI USA Center for Computational Astrophysics Flatiron Institute New York NY USA Department of Astrophysical Sciences Princeton University Princeton NJ USA Department of Physics Carnegie Mellon University Pittsburgh PA USA Department of Physics and Center for Data Science New York University New York NY USA Google DeepMind London UK Department of Computer Science and Technology University of Cambridge Cambridge UK Microsoft Research Beijing China Department of Biomedical Informatics Harvard Medical School Boston MA USA Broad Institute of MIT and Harvard Cambridge MA USA Harvard Data Science Initiative Cambridge MA USA Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University Cambridge MA USA Department of Systems Biology Harvard Medical School Boston MA USA Deep Forest Sciences Palo Alto CA USA BioMap Beijing China Mo
来源: 评论
A Nodal Immersed Finite Element-Finite Difference Method
arXiv
收藏 引用
arXiv 2021年
作者: Wells, David R. Vadala-Roth, Ben Lee, Jae H. Griffith, Boyce E. Department of Mathematics University of North Carolina Chapel HillNC United States Westborough MA United States Department of Mechanical Engineering Institute for Computational Medicine Johns Hopkins University BaltimoreMD United States Department of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina Chapel HillNC United States McAllister Heart Institute University of North Carolina Chapel HillNC United States Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver SpringMD United States
The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. The IFED method uses a finite element (FE) method to approxim... 详细信息
来源: 评论
A deep learning-based ODE solver for chemical kinetics
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Tianhan Zhang, Yaoyu Weinan, E. Ju, Yiguang Department of Mechanical and Aerospace Engineering Princeton University PrincetonNJ08544 United States School of Mathematical Sciences Institute of Natural Sciences MOE-LSC Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai200240 China Department of Mathematics Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Developing efficient and accurate algorithms for chemistry integration is a challenging task due to its strong stiffness and high dimensionality. The current work presents a deep learning-based numerical method called... 详细信息
来源: 评论
COVID-19 Infected Lung Computed Tomography Segmentation and Supervised Classification Approach
收藏 引用
Computers, Materials & Continua 2021年 第7期68卷 391-407页
作者: Aqib Ali Wali Khan Mashwani Samreen Naeem Muhammad Irfan Uddin Wiyada Kumam Poom Kumam Hussam Alrabaiah Farrukh Jamal Christophe Chesneau Department of Computer Science Concordia College BahawalpurBahawalpur63100Pakistan Department of Computer Science&IT Glim Institute of Modern StudiesBahawalpur63100Pakistan Institute of Numerical Sciences Kohat University of Science&TechnologyKohat26000Pakistan Institute of Computing Kohat University of Science and TechnologyKohat26000Pakistan Program in Applied Statistics Department of Mathematics and Computer ScienceFaculty of Science and TechnologyRajamangala University of Technology ThanyaburiThanyaburi12110Thailand Departments of Mathematics Faculty of ScienceCenter of Excellence in Theoretical and Computational Science(TaCS-CoE)&KMUTT Fixed Point Research LaboratoryRoom SCL 802 Fixed Point LaboratoryScience Laboratory BuildingKing Mongkut’s University of Technology Thonburi(KMUTT)Bangkok10140Thailand Department of Medical Research China Medical University HospitalTaichung40402Taiwan College of Engineering Al Ain UniversityAl Ain64141United Arab Emirates Department of Mathematics Tafila Technical UniversityTafila66110Jordan Department of Statistics The Islamia University of BahawalpurBahawalpur63100Pakistan 11Department of MathematicsUniversitéde CaenLMNOCaen14032France
The purpose of this research is the segmentation of lungs computed tomography(CT)scan for the diagnosis of COVID-19 by using machine learning *** dataset contains data from patients who are prone to the *** contains t... 详细信息
来源: 评论
T ensor-decomposition-based A P riori S urrogate (TAPS) modeling for ultra large-scale simulations
收藏 引用
Computer Methods in Applied Mechanics and engineering 2025年 444卷
作者: Jiachen Guo Gino Domel Chanwook Park Hantao Zhang Ozgur Can Gumus Ye Lu Gregory J. Wagner Dong Qian Jian Cao Thomas J.R. Hughes Wing Kam Liu Theoretical and Applied Mechanics Program Northwestern University 2145 Sheridan Road Evanston 60201 IL USA Department of Mechanical Engineering Northwestern University 2145 Sheridan Road Evanston 60201 IL USA Department of Mechanical Engineering University of Maryland Baltimore County 1000 Hilltop Circle Baltimore 21250 MD USA Department of Mechanical Engineering The university of Texas at Dallas 800 W. Campbell Road Richardson 75080 TX USA Co-Founders of HIDENN-AI LLC 1801 Maple Ave Evanston 60201 IL USA Institute for Computational Engineering and Sciences The University of Texas at Austin 201 East 24th Street Stop C0200 Austin 78712 TX USA
A data-free predictive scientific AI model, termed Tensor-decomposition-based A Priori Surrogate (TAPS), is proposed for tackling ultra large-scale engineering simulations with significant speedup, memory savings, and...
来源: 评论